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Neural evidence suggests that mechanisms associated with conscious access (i.e., the

ability to report on a conscious state) are “all-or-none”. Upon crossing some threshold,

neural signals are globally broadcast throughout the brain and allow conscious reports.

However, whether subjective experience (phenomenal consciousness) is categorical (i.e.,

transitioning abruptly from unconscious to conscious states) or graded (i.e., characterized

by multiple intermediate states) remains an open question. To address this issue, we built

a series of artificial neural networks containing distinct feedback connectivity from

“multisensory” to “unisensory” cortices. In line with consciousness theories, we oper-

ationalized perceptual consciousness by the presence of feedback from higher-order nodes

back to unisensory nodes which allow ‘neural ignition’ e a rapid, non-linear boost in

response putatively leading to phenomenal consciousness. When simulating how these

networks responded to unisensory and multisensory inputs, we found the fastest re-

sponses for multisensory presentations associated with multisensory feedback, and the

slowest responses for multisensory presentations without feedback. Most interestingly,

despite being built in line with “all-or-none”models of consciousness, multisensory stimuli

associated with unisensory feedback (i.e., auditory or visual), and hence consistent with

unisensory phenomenology according to theories of consciousness, generated
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intermediate reaction times. To extend these models to human perception and perfor-

mance, we conducted extensive psychophysical testing in 29 subjects who each completed

10 h of a multisensory cue-congruency task. Consistent with the modeling results, we

found that reaction times to multisensory cues reported as unisensory were intermediate

between those of fully aware and fully unaware cues. These results support the existence

of graded forms of phenomenological consciousness that can be instantiated by simple

neural networks built in line with “all-or-none” models of consciousness.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Theories of consciousness such as the Global Neuronal

Workspace (GNW; Dehaene & Changeux, 2001) and Local

Recurrence (LC; Lamme, 2006) emphasize the importance of

global processing, and posit that recurrent activity among

neural structures leads to consciousness. These theories state

that stimuli reach consciousness when ascending sensory

input is either strong enough in isolation or amplified via top-

down attentional signals to result in “neural ignition” e the

step-function broadcasting of sensory information

throughout the neocortical mantle (Dehaene & Changeux,

2011). Feedback projections from prefrontal and parietal

associative areas (in GNW; Dehaene & Changeux, 2011) or

from higher-order sensory areas (in LC; Lamme, 2006) to lower

sensory regions are considered crucial in supporting recurrent

neural activity and thus consciousness. This all-or-none

“neural ignition” account of neural processing in perceptual

consciousness comes with a wealth of empirical support (van

Vugt et al., 2018). Supporting data generally come from a

comparison of neural states when participants report being

aware (i.e., conscious) versus unaware of stimuli. Studies

using approaches ranging from functional magnetic reso-

nance imaging (fMRI; Grill-Spector, Kushnir, Hendler, &

Malach, 2000; Dehaene et al., 2001; Rees, Kreiman, & Koch,

2002), to magneto- and electro-encephalography (M/EEG; Del

Cul et al., 2006, 2007; Fahrenfort, Scholte, & Lamme, 2007;

Gaillard et al., 2009; Noel, Simon et al., 2018), and single-unit

recordings (Leopold & Logothetis, 1996; Logothetis & Schall,

1989; Noel, Ishizawa, Patel, Eskandar, & Wallace, 2018;

Quiroga, Mukamel, Isham, Malach, & Fried, 2008; van Vugt

et al., 2018), all agree that neural activity is more sustained

when participants report being aware compared to unaware

of the stimuli (Dehaene & Changeux, 2011; however see

Fr€assle, Sommer, Jansen, Naber, & Einh€auser, 2014; Tsuchiya,

Wilke, Fr€assle, & Lamme, 2015; for recent objections to con-

trasting reports of perceived vs non-perceived in conscious-

ness studies).

Nevertheless, while access to consciousness (i.e., the abil-

ity to report) appears likely to be supported by categorical

neural transitions, it is still a matter of debate whether

phenomenological experience is categorical or graded (Block,

1995; Cleeremans & Jimenez, 2002; Kouider, de Gardelle,

Sackur, & Dupoux, 2010). Take for example the case of

multisensory consciousness, which may be described either

as cohesive and singular (i.e., categorical change from no
experience in dreamless sleep to multisensory experience), or

conversely, as a collection of unisensory experiences

dynamically mixing throughout daily life in a graded fashion

(Deroy, Chen, & Spence, 2014; Noel, Wallace, & Blake, 2015;

O'Callaghan, 2017). Interestingly, theories of consciousness

that start from phenomenological introspection e as opposed

to empirical data (e.g., Integrated Information Theory; Tononi

& Koch, 2015; Tononi, Boly, Massimini, & Koch, 2016) e sug-

gest that phenomenal consciousness is graded. This work has

derived consciousness indices placing patients with different

disorders of consciousness (Casali et al., 2013; Sarasso et al.,

2015) and in different sleep/awake cycles (Andrillon,

Poulsen, Hansen, L�eger, & Kouider, 2016; Schartner et al.,

2015; 2017) along a continuum of consciousness. Thus, while

theories based on neural data suggest that consciousness is

all-or-none, phenomenological introspection suggests that

consciousness is graded.

In the current work, we seek to reconcile this paradox by

testing whether circuit architectures that support categorical

neural steps can produce graded patterns of response. To

address this “categorical versus graded” debate (Kouider et al.,

2010), we structured neural networks that formalize the role of

feedback connections and neural non-linearities (Fig. 1, upper

row) in biologically-inspired, non-spiking neural networks. In

line with theoretical postulates supporting “all-or-none”

consciousness (Dehaene & Changeux, 2011; Lamme, 2006;

Joglekar, Mejias, Yan, & Wang, 2018), each sensory area pro-

cesses information via a sigmoidal activation function.

Furthermore, multisensory consciousness was operational-

ized by the presence of feedback from an audio-visual (AV)

network node back to unisensory regions (Fig. 1, rightmost

panel). In such architecture, given the non-linear

inputeoutput function, as well as the connectivity patterns,

neural ignition follows once sensory input is sufficiently

robust. In contrast, a network was considered to not be able to

support consciousness e not even “in principle” e when no

feedback was present (second row, leftmost panel). We also

built networks that, arguably and in principle, may be capable

of supporting consciousness in a single sensorymodality (e.g.,

audio consciousness when there is a feedback connection

from AV to A but not V, and visual consciousness when there

is a feedback connection from AV to V but not A; Figure 1, 1st

row, middle panels). These networks are not full models of

consciousness, but best understood as computational in-

stantiations of consciousness theory that postulates that

feedback connectivity is central to phenomenology. We then
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Fig. 1 e Neural Network Implementation and Results. Top: According to the Global Neural Workspace (GNW) and Local

Recurrence (LC) theories of consciousness, a stimulus becomes conscious and reportable when it engages both feedforward

and feedback projections, hence establishing a recurrent network of sustained activity and neural information is widely

broadcast throughout the brain. Hence, when feedback projections are engaged and a recurrent network is formed, the

system is capable of auditory-alone (top row, second column; no feedback projection to V), visual-alone (top row, third

column; no feedback projection to A), or audiovisual consciousness. Bottom: Observed pattern of reaction times as a

function of auditory, visual, and audiovisual cues, and whether the network is capable of no consciousness and full

consciousness (leftehand plot; no feedback or full feedback; results plotted are from the “general” model). Left panel equally

plots AV presentations that are partially perceived (e.g., AV perceived as V or A, green crosses) versus fully perceived trials

(x-axis). A total of 625 dots/crosses are plotted, each being the average of 100 trials simulated for a given parameter set (625

sets of parameters). Right panel emphasizes the reaction times to AV stimulation (green in left panel) when they were fully

perceived as AV, partially perceived as A or V, and not perceived at all.
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ran simulations in these networks to characterize the graded

versus categorical relation between putative states of con-

sciousness, and estimated task performance based on simu-

lated reaction times. In a second modeling effort, we left all

feedback projections intact, as in the AV-consciousness

model. We hypothesized that while conscious access (AV, A,

V, none) is dependent on threshold crossings (Dehaene &

Changeux, 2001; Lamme, 2006; van Vugt et al., 2018), graded

phenomenology involves an integrative function. The

modeling results show that a network with non-linear

inputeoutput functions can give rise to graded reaction

times, which we argue could reflect graded phenomenology.

In the second element of this work, we then assessed to

what extent these simple models may capture human

behavior under distinct states of phenomenal consciousness.

For this purpose, we presented participants with unisensory

(i.e., V alone, A alone) and multisensory (i.e., VA) spatial cues

near their threshold for detection, and asked them to report
the location of a subsequent supra-threshold tactile target via

a speeded button press. We compared reaction times to the

tactile targets depending on whether perception of the pre-

ceding cues was self-reported as being multisensory, uni-

sensory (i.e., partial consciousness) or unperceived. The

assumption here is that strength of congruency priming in-

dicates the vividness of phenomenological experience (see

Faivre, Mudrik, Schwartz, & Koch, 2014; Gelbard-Sagiv, Faivre,

Mudrik, & Koch, 2016 for related findings). Of particular in-

terest was whether reaction times following partially

perceived cues would more resemble those following fully

perceived versus unperceived cues. We argue that a graded

account of consciousness would be supported by a specific

pattern of reaction times following multisensory cue pre-

sentations; If multisensory cues can be partially conscious,

such cues should generate response times intermediate be-

tween response times for fully perceived versus non-

perceived cues.

https://doi.org/10.1016/j.cortex.2019.05.018
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2. Methods

2.1. Neural network modeling

2.1.1. Network description
The network is built to generate artificial reaction times given

a visual, auditory, or audiovisual stimulus. In the case of au-

diovisual stimulation, auditory and visual stimuli are tempo-

rally and spatially coincident. In its general form, each neuron

in the network receives a net input and responds to it via its

intrinsic temporal dynamics (i.e., a low-pass first order dy-

namics) and a sigmoidal activation function. The net input

activity is the sum of external network-based inputs as well as

auto-excitatory inputs. The neuron's response generates an

output activity, which represents the neuron's firing rate. Due

to the sigmoidal activation function, each node's output is

constrained between 0 (neuron's spontaneous activity) and 1

(neuron's maximal activation) and the inputeoutput function

is non-linear.

The networks developed here has five neural areas (see

Fig. 1): a region representing the cochlea, area A representing

a cortical auditory area, a region representing the retina, re-

gion V representing a cortical visual area, and finally region

AV representing a cortical audiovisual multisensory area. For

simplicity, each cortical area is simulated by a single node,

representing an ensemble of cells sharing similar properties.

In the networks, the cochlea and the retina just replicate the

external input (i.e., they simulate the presence of a sensory

auditory and visual stimulus respectively, applied for a given

time interval) with the addition of a noise drawn randomly

on each trial from a normal distribution. From these pe-

ripheral regions, the input is then propagated to cortical

areas. The cochlea projects to area A with weight, Wac while

the retina projects to area V with weight Wvr. In turn, uni-

sensory cortical areas project to the multisensory area with

feedforward strengths Wma and Wmv, respectively, in the case

of audition and vision. Further, unisensory areas are recip-

rocally connected via inhibitory connections of strength Iav

(from visual area to auditory area) and Iva (from auditory to

visual area). Direct connections between unisensory areas

are well established anatomically in biological systems (see

Kayser, Petkov, & Logothetis, 2009, for review) and the

mutual inhibitory pattern is routinely employed in neural

networks in order to instantiate competition between areas

(Cisek, 2007; Seely & Chow, 2011). Further, these inhibitions

contribute to prevent the formation of “phantom activation”

(e.g., activation of area V under auditory stimulation alone)

due to feedback connections. The multisensory area, in turn,

depending on the particular model (Fig. 1), may or may not

send feedback connections in return to unisensory areas; to

A with weight Bamand to V with weight Bvm. Lastly, in order to

simulate the role of lateral synapses within each area, re-

gions A, V, and AV receives excitatory self-connections with

weight La, Lv, Lm, respectively. See Fig. 1 for network diagrams

and Table 1 for the values of model parameters. It is impor-

tant to note that an array of 625 different parameter values

(parametrically varied) were used, indicating that the re-

ported results are specific to network architectures and not

the particular parameters we use.
2.1.2. Network implementation and readout
2.1.2.1“A PRIORI” MODELS. All equations were implemented and

numerically solved within the MATLAB (MathWorks Inc.,

Natick, USA) software environment using a simulation time

step Dt ¼ .1 msec. Simulations started at t ¼ 0 from the resting

condition (unperturbed network). Then, an external input,

representing a visual and/or auditory stimulus, was applied

after 20msec of simulation (i.e., 200 time steps, hence onset of

stimulus application is ton ¼ 20msec) for a duration of 10msec

(100 time steps, as in the behavioral experiment below, hence

offset of stimulus application is toff ¼ 30 msec). Simulations

terminated after 1200 iteration steps, corresponding to tend ¼
120msec. This simulation lengthwas utilized as it was largely

sufficient for the network to exhaust its initial transient

response and reach a new steady state in response to the

stimulation.

The overall input (i.e., uðtÞ) to a generic neuron in the

network is processed via functions governing first-order

temporal dynamics Eq. (1) and sigmoidal activation Eq. (2),

generating the neuron's output activity (i.e., yðtÞ):

t
dqsðtÞ
dt

¼ � qsðtÞ þ usðtÞ (1)

ysðtÞ¼ F
�
qsðtÞ

� ¼ 1

1þ exp
�� �

qsðtÞ � 4s

�
xs
� (2)

where subscript s may assume value a, v, or m (auditory area

A, visual area V or multisensory area AV). In Eq. (1) t repre-

sents the internal time constant of the neuron (we assume the

same time constant for all neurons), and xs and 4s are pa-

rameters which establish respectively the slope and the cen-

tral position of the sigmoidal relationship (see Table 1 for

parameter values). According to Eq. (2), the output activity of

each neuron is constrained between ~0 (i.e., neuron's spon-

taneous activity) and 1 (i.e., neuron's maximal activity).

The net input uðtÞ that reaches a neuron may be generally

written as the sum of three contributions: an external input

eðtÞ due to a stimulus being presented (auditory, visual, or

audiovisual), a lateral input LðtÞ mimicking lateral synapses

(self connections), and network inputs coming from neurons

in other areas via inter-area synapses (e.g., Iav and Iva in

Equations (3) and (4), andWmv andWma in Equation (5)). Hence,

given the network architecture and synaptic weighting, we

can more precisely describe these relationships in the

following equations (in this case for a network with no feed-

back connections):

uaðtÞ¼ eaðtÞ,Wac þ yaðtÞ,La � yvðtÞ,Iav (3)

uvðtÞ¼ evðtÞ,Wvr þ yvðtÞ,Lv � yaðtÞ,Iva (4)

umðtÞ¼ yvðtÞ,Wmv þ yaðtÞ,Wma þ ymðtÞ,Lm (5)

eaðtÞ and evðtÞ in Eqs. (3) and (4) represent the signals from the

cochlea and the retina having the following expression:

esðtÞ ¼

8>><
>>:

0; 0< t< ton
Es; ton � t � toff
0; toff < t< tend

(6)

In Eq. (6), s holds for a and v. Es is a constant value

https://doi.org/10.1016/j.cortex.2019.05.018
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Table 1 e Neural network parameters.

Dynamics and sigmoidal activation function within nodes

Dt ¼ :1 ms t ¼ 3 msec T ¼ 120 msec

4a ¼ ½8 : :5 : 10�* 4v ¼ ½8 : :5 : 10�* 4m ¼ ½5 : :5 : 7�**
xa ¼ :75 xv ¼ :75 xm ¼ :75

External auditory and visual stimuli (Mean m and standard deviation d of the Gaussian from which the random input was drawn)

m ¼ 10 d ¼ 2:5

Inter-area and lateral synapses

Wac ¼ 1 Wvr ¼ 1

La ¼ 1 Lv ¼ 1 Lm ¼ 1

Wma ¼ [8:.5:10]*** Wmv ¼ [8:.5:10]***

Iav ¼ 4 Iva ¼ 4

Bam ¼ [4:.5:6]**** Bvm ¼ [4:.5:6]****

Consciousness decoding (“general model”)

Tu ¼ :2 Tm ¼ :8

* Range utilized during different simulations. Central point of the sigmoidal activation function in area A and V were always yoked.

**Range of utilized values for the central point of the multisensory area's sigmoidal activation function.

*** Weight of feedforward projection from unisensory to multisensory areas was modulated in different simulations yet A and V projections

were always the same.

**** Weight of feedback projections from the multisensory to unisensory areas was modulated in different simulations yet projection weights

were always the same to both A and V areas.
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representing input strength drawn randomly on each trial

from the normal distribution, Nðm; dÞ (of course in the absence

of an external auditory or visual stimulus, Ea or Ev are set to 0).

Auditory and visual noise constants are drawn independently

on each trial. Contrarily, in a networkwhere both auditory and

visual unisensory areas receive feedback, equations (3)e(5)

above would take on the following form:

uaðtÞ¼ eaðtÞ,Wac þ yaðtÞ,La � yvðtÞ,Iav þ ymðtÞ,Wam (7)

uvðtÞ¼ evðtÞ,Wvr þ yvðtÞ,Lv � yaðtÞ,Iva þ ymðtÞ,Wvm (8)

umðtÞ¼yvðtÞ,Wmv þ yaðtÞ,Wma þ ymðtÞ,Lm (9)

Four different models were implemented by keeping all

parameters equal except for the feedback projections existing

from area AV to unisensory areas. As a short hand, we refer to

these models as in theory putatively supporting no con-

sciousness, A-consciousness, V-consciousness, and AV-

consciousness. Of course, none of these models actually in-

stantiates any form of subjective experience and their archi-

tectures are too simple to provide insight into the biological

neural processing supporting consciousness. They are simply

meant to reflect the theoretical position (Dehaene &

Changeux, 2011; Lamme, 2006) that feedback connectivity

may, in principle, be important in consciousness. That is, they

are best understood as simple computational instantiation of

well-established theories of consciousness (Dehaene &

Changeux, 2011; Lamme, 2006).

Each of these models was initialized with a set of 625

different parameters, parametrically manipulating the key

variables 4a and 4v (slope of sigmoidal activation function in

areas A and V, which were always kept the same), 4m (slope of

the sigmoidal activation function in area AV), Wam and Wvm

(strength of feedforward projection from unisensory areas to

the multisensory region, which were always kept the same),

and Bma and Bmv (strength of feedback projection from the
multisensory area to unisensory areas, which were always

kept the same; see Table 1 for details). For each of these in-

stantiations, 100 trials were simulated with varying input

levels according to the normal distribution, Nðm; dÞ. For each

trial, the area under the activation curve in the multisensory

region was a priori considered to be proportional to reaction

time, well in line with panoply of evidence suggesting

perceptual decisions are reached following an accumulation

process (Shadlen, Hanks, Churchland, Kiani, & Yang, 2006;

Usher & McClelland, 2001). The area under the activation

curve in the multisensory area was estimated via the trape-

zoidal method, and this area was multiplied by 10 (ms) and

subtracted from a baseline reaction time of 300 msec. In other

words, for a given trial, the area under the activation curve of

the multisensory region was inversely proportional to the

simulated reaction time and had a slope of 10 msec per unit.

The 100 trials for a given parameter set were averaged, and

subsequently a grand mean reaction time for all 625 param-

eter set was calculated for each model.

2.2. General model

The separate “a priori” models described above most clearly

illustrate cases in which, according to the GNW and LC the-

ories (Dehaene & Changeux, 2011; Lamme, 2006), networks

may model a system supporting consciousness of different

perceptual elements (none, A, V, or AV). Nevertheless, as

humans countwith a single brain, and as feedback projections

do not appear and disappear to allow for uni versus multi-

sensory consciousness, we developed a more general model

accounting for all types of unisensory and multisensory

behavior with a common architecture. Namely, we left all

feedback projections intact (as in AV-consciousness model)

and assumed that conscious access (AV, A, V, none) was

dependent upon threshold crossings, in line with GNW/LC

(Dehaene & Changeux, 2001; Lamme, 2006) and empirical

https://doi.org/10.1016/j.cortex.2019.05.018
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observations (e.g., van Vugt et al., 2018). Inspired by neuro-

imaging studies (see Tong, 2003, for review), we assumed that

consciousness is extracted based on the peak activation level

in both unisensory andmultisensory areas. That is, an input is

taken to evoke a conscious perceptual experience when it

elicits a neural activation peak above a given threshold in both

unisensory (Tu) and multisensory (Tm) areas (see Table 1 for

details). When the peak activation in area AV surpasses TM

and peak activation in areas A and V surpass Tu, the stimulus

is considered to be AV-conscious (all areas are supra-

threshold for consciousness). If area AV surpasses TM but

one of the unisensory areas (e.g., area V) does not peak above

the Tu threshold, the stimulus is considered to be perceived as

audio alone. With the exception of the decoding of perceptual

consciousness (i.e., no-consciousness, A-consciousness, V-

consciousness, and AV-consciousness), implementation and

readout in the “general” model followed exactly as described

for the “a priori” models.

2.3. Psychophysics

2.3.1. Rationale
We aimed to query whether human behavior feel in line with

the modeling results. Inspired by previous work on uncon-

scious multisensory congruency priming (Faivre et al., 2014),

we devised a task where multisensory cues predicted the

location of subsequent tactile targets. Given that our model

captured how multisensory cues are processed under distinct

putative conditions of conscious access, we expected partially

perceived cues to generate responses to the target location

with intermediate reaction times, lying between responses

following fully perceived and unperceived cues. We report

how we determined our sample size, all data exclusions, all

inclusion/exclusion criteria, whether inclusion/exclusion

criteria were established prior to data analysis, all manipula-

tions, and all measures in the study.

2.3.2. Participants
Twenty-nine healthy volunteers (14 females, mean age

20.9 ± 2.3 years), including one of the authors (JPN) took part in

this experiment. All participants self-reported normal hearing

and touch, and had normal or corrected-to-normal visual

acuity. Participants gave written, informed consent to partake

in the study, which was approved by Vanderbilt University

Medical Center's ethics board. No part of the study procedures

or analyses was pre-registered in a time-stamped, institu-

tional registry prior to the research being conducted. The data

and code is publicly available at: https://osf.io/45gch/. A

sample size commensurate with previous reports (Faivre

et al., 2014) was collected e however in this case we

collected approximately 10 h of data per subject, to assure not

only between-subject but also within-subject reproducibility.

2.3.3. Materials and apparatus
In a congruency-priming task, participants were prompted

toward either their left or right hand via auditory, visual, or

audiovisual cues located at the fingertips before the delivery of

a target tactile stimulation to one of the index fingers. Audi-

tory stimuli consisted of a pure tone presented for 10 ms at a

frequency of 2.3 kHz and 50 dB SPL intensity, via a Piezo
Buzzer (F/UCW 06 Piezo Buzzer, Digisound, Norderstedt, Ger-

many). Participants wore headphones (HD 558, Sennheiser,

Wedemark, Germany) over which broadband noise was

continuously delivered (range: 57 dB SPL e 91 dB SPL). The

ratio between the tone and noise was determined using a

staircase procedure, in order to titrate detection performance

to perceptual threshold (see below). Visual stimuli consisted

of a transient luminance increase produced by a white LED

(3 mm diameter, Adafruit, New York, United States; back-

ground luminance: 200 mcd; increased by 2 mcd, as deter-

mined by a staircase procedure; see below). Audiovisual cues

consisted of the synchronous and co-localized presentation of

auditory and visual cues at their predetermined threshold

level. The target stimuli consisted of a 100 msec supra-

threshold vibrotactile stimulation (model 312-101, Precision

MicroDrives, London, United Kingdom) presented 600 msec

after the cue offset. A vibrator was attachedwithmedical tape

to the left and right index finger (medial phalange) of partici-

pants. Auditory, visual, and tactile stimulation were

controlled via a micro-controller (clock rate: 16 MHz;

ATmega1280, Arduino, Italy) in serial communication with a

PC (Dell Vostro, 7000 Series, Round Rock, TX, USA; Baud rate:

115200 Hz). LEDs were connected to Pulse-Width-Modulated

(PWD) pins, which allowed dividing input voltages into 250

steps. General experimental procedures were controlled via

purpose-made MATLAB (MathWorks Inc., Natick, USA) scripts

in conjunction with the Psychophysics Toolbox extension

(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). Timing of all

experimental components was verified with an oscilloscope

(HM507, Hameg, Germany).

2.3.4. Procedure
Participants sat in an unlit and sound-attenuated room

(WhisperRoom™) and rested their chin on a chinrest

approximately 60 cm from a CRT monitor (Mitsubishi Dia-

mond Pro 2070SB, Sydney, Australia). Before undertaking the

main experiment, auditory threshold in noise and visual dif-

ference threshold were measured. In separate blocks for

audition and vision, an adaptive 1-up-1down staircase

approach was undertaken wherein auditory noise was

initially delivered at 65 dB SPL and adjusted in steps of .5 dB

SPL, while visual targets had an initial differential of 30 mcd

with respect to a baseline of 200mcd and were adjusted in

steps of 2 mcd. In the case of the auditory staircase, partici-

pants performed a two alternative forced choice (2AFC) task

wherein they were asked to indicate whether a 10 msec beep

had occurred leftward or rightward of fixation. Similarly, in

the visual staircase they were asked in a 2AFC task to indicate

whether the leftward or rightward LED (10 msec) had flashed.

The locations of auditory and visual signals were the same

during the staircase procedure and the main experiment. The

staircases were continued for a total of 40 trials yielding a final

split of approximately 50% of targets correctly discriminated.

The final auditory noise and LED intensity differentials were

set as parameters to be utilized in the main experiment. Once

auditory and visual parameters were set, participants were

asked to place their left and right index fingers on response

keys situated immediately in front of them, parallel to their

left and right shoulders, respectively. The Piezo Buzzer deliv-

ering the auditory cues and LEDs emitting the visual cueswere

https://osf.io/45gch/
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placed at shoulder width and three centimeters further in

depth from the response keys (see Fig. 2, top row). Participants

were informed that a peri-threshold auditory, visual, or au-

diovisual cue would occasionally precede a tactile target

stimulation they ought to respond to as quickly as possible by

button press. In 80% of cued trials the cue was congruent with

the tactile target (e.g., left hand cued correctly indicated target

tactile stimulation on the left hand), while on the remaining

20% of cued trials the cuewas incongruent (e.g., left hand cued

and target tactile stimulation on the right hand). In addition,

participants were informed that no-cue trials would also

occur (10% of all trials). After responding to tactile stimulation

by button press, a fixation point on the CRT monitor turned

from red to green, indicating that the tactile response was

registered and prompting the participants to answer a second

question regarding the sensory nature of the cue; auditory,

visual, audiovisual, or no cue. That is, on every trial the
Fig. 2 e Experimental Paradigm and Psychophysical Results. To

column top panel) or invalid (20% of trials, rightmost panel top

and blue, as illustrated) cues as to the location of a subsequent

possible. Spatial cues were titrated before each experimental se

threshold. Bottom: Behavioral data showing the effect of audito

detection task with cues presented at detection threshold. Left

relative to invalid cues where values less than 1 indicate a congr

auditory (red), visual (blue), or audiovisual (green) cue. The data

consciously (x-axis) or reported no-cue (y-axis). Additionally, o

represent audiovisual trials where participants were only partia

dot represents a participant and the colored arrows on the axes

shows boxplot and individual subject data for the congruency e

reported the full percept (left-most), a partial percept (middle), an

consciousness on multisensory performance.
participant provided a speeded response to tactile stimula-

tion, and a report regarding their subjective experience of the

cue. The session was divided into 6 blocks, each block

composed of 12 tactile stimulations preceded by no-cue (6 left

and 6 right index finger), 16 audio congruent cues, 16 visual

congruent cues, 16 audiovisual congruent cues, 4 audio

incongruent cues, 4 visual incongruent cues, and 4 audiovi-

sual incongruent cues. Thus, every block was 56 trials long. In

total, during each session each cue was repeated 96 times in

the congruent condition, and 24 times in the incongruent

condition. All trial types were randomized within-blocks and

inter-trial interval lasted between 1.0 and 2.5 sec (randomly

sampled from a uniform distribution). Participants were

allowed to take self-paced breaks between blocks, and before

initiation of the main experiment, half a block of practice

trials was administered. The entire duration of one experi-

mental session was about 60 min. In total participants took
p: Participants were given a valid (80% of trials, middle

panel), auditory (red), visual (blue), or audiovisual (both red

tactile target (black) they had to respond to as fast as

ssion and for each subject in order to be at detection

ry, visual, and audiovisual cues to a lateralized tactile

panel shows the ratio of mean reaction times for valid

uency priming effect for tactile targets when preceded by an

are subdivided by whether participants perceived the cue

pen green circles (and dashed green arrow on the y-axis)

lly aware; reporting either A or V percept, but not AV. Every

of the scatter plot show the mean of the group. Right panel

ffect associated with AV presentation when participants

d no percept (right-most), demonstrating a graded effect of

https://doi.org/10.1016/j.cortex.2019.05.018
https://doi.org/10.1016/j.cortex.2019.05.018


c o r t e x 1 2 0 ( 2 0 1 9 ) 1 6 9e1 8 0176
part in 10 different 60-minutes sessions (maximum of 2 ses-

sion per day separated by at least a 15 min break), and hence

in total completed approximately 50 blocks (over 5000 trials

per participant). This high number of repetitions permitted us

to collect a sufficiently large sample of trials with partially

perceived stimuli (>300 trials/subject and trial type).

2.3.5. Analyses
The cue in a given trial was defined as conscious if it was

properly classified by the participant's subjective report (e.g., a

‘visual’ report following a visual cue, an ‘audiovisual’ report

following an audiovisual cue), and as unconscious if it was

missed (i.e., report of no sensory experience following audi-

tory, visual, or audiovisual cues). Trials were excluded if the

cue was misclassified (e.g., visual report following an audio

cue). Partially conscious trials were defined as those in which

AV stimuli were presented, but solely A or V was reported.

Trials with incorrect tactile discrimination, or with reaction

times faster than the 2.5th percentile or slower than the 97.5th

percentile for a given participant and condition of conscious

access were excluded (amounting to 1.7% and 5.0% of total

trials, respectively). The remaining reaction times were

analyzedwith linearmixed effectsmodels (lme4 and lmerTest

packages; Kuznetsova, Bruun Brockhoff, & Haubo Bojesen

Christensen, 2013; Bates et al., 2014), with the fixed effects

being cue (visual, auditory, or audiovisual) and congruency

(congruent or incongruent), and random intercepts for sub-

jects. Random slopes for each fixed effect were included in the

model, following model selection based on Bayesian infor-

mation criterion (BIC). Significance of fixed effects was esti-

mated using Satterthwaite's approximation for degrees of

freedom of F statistics (Satterthwaite, 1946). Conditions of

conscious access of cues (i.e., conscious, unconscious, or

partially conscious) were analyzed separately. All behavioral

analyses were performed with R (2016) with ggplot2

(Wickham, 2009) for graphical representations.
3. Results

3.1. Neural network modeling

Results from the neural network simulations must be

assessed qualitatively, as statistical significance in these

networks is heavily influenced by the number of trials simu-

lated within a parameter set (analogous to within-subjects

trials in psychophysics), the number of parameter sets uti-

lized (analogous to number of subjects in psychophysics), and

the RT decoding scheme (differences between conditionsmay

be accentuated or diminished by the arbitrary relation be-

tween neural activation and the reaction time output).

Regarding the separate “a priori” models, on average the

simulated reaction time under a neural architecture with no

feedback projections was 272.1 msec to audio input,

277.6 msec to visual input, and 256.3 msec to audio-visual

input. Thus, multisensory facilitation, or the difference be-

tween the fastest unisensory condition and the multisensory

condition, was on the order of 15.7msec for a network with no

feedback projections. When feedback projections were intro-

duced between themultisensory node and a single unisensory
node (either A or V), the average reaction time to AV stimuli

was 243.8 msec. With such a network structure, the average

reaction time to the faster unisensory condition (usually A

when feedback from AV to A was present, and V when feed-

back from AV to V was present) was 264.8 msec, and the

average reaction time was 274.7 msec for the slower uni-

sensory condition (V when feedback was from AV to A, and A

when feedback was from AV to V). Thus, multisensory facili-

tation of reaction time predicted by the network modeling

partial consciousness was on the order of 21 msec. Lastly,

when the network was equipped with feedback projections

from the multisensory area to both unisensory areas, the

average reaction times were 261.3 msec for audio input,

268.1 msec for visual input, and 234.8 for audiovisual input.

Hence, in the network modeling full, multisensory facilitation

was on the order of 26.5 msec.

To summarize, architectures with no feedback, partial

feedback, or full feedback produced facilitated reaction times

(unisensory vs multisensory) of 15.7, 21.0 and 26.5 msec,

respectively. A linear interpolation between AV performance

in the no-feedback and complete feedback networks suggests

that partial feedback should result in reaction times of about

245.5 msec. The mid-point between this linear interpolation

(245.5msec) and the full feedback condition is 240.1msec; this

latter value therefore demarcates the boundary where simu-

lated partially perceived trials would be closer to either full

consciousness (less than 240.1 msec) or to the linear interpo-

lation between full consciousness and no consciousness

(more than 240.1 msec). As stated above, the average reaction

time to partially perceived multisensory presentation was

243.8 msec, suggesting that the network with partial feedback

lies closer to the linear interpolation than to the fully con-

nected or disconnected networks.

A similar pattern of results emerges when considering the

“general” model in which putative reports of consciousness

(i.e., access consciousness) are decoded relative to an activa-

tion threshold (results plotted in Fig. 1, bottom row), and not

assumed given connectivity patterns (as in the “a priori”

models, where solely RTs are decoded, and not access con-

sciousness). The average reaction time when both compo-

nents of an audiovisual stimulus were deemed to be

consciously perceived was 193.2 msec. The faster average

unisensory reaction time that was fully perceived (A-con-

sciousness when Awas presented or V-consciousness when V

was presented) was 238.8 msec, while the slower average was

248.0 msec. Thus, multisensory facilitation under full con-

sciousness in this model was on the order of 45.5 msec (see

Fig. 1; contrast between red/blue and green dots projected on

the x-axis). In contrast, when stimuli were not perceived, the

average reaction times were considerably slower (292.7 msec

for audio stimuli, 291.8msec for visual stimuli, and 282.6msec

for audiovisual stimuli; see Fig. 1) and multisensory facilita-

tion was reduced to approximately 9 msec (see Fig. 1; contrast

between red/blue and green dots projected on the y-axis).

Lastly, when the consciousness threshold was surpassed in

the multisensory node and one of the unisensory nodes

(operationally resulting in partial consciousness when au-

diovisual stimuli were presented or full consciousness when a

unisensory stimulus was presented), the average reaction

time to multisensory stimuli (yet experienced as unisensory)

https://doi.org/10.1016/j.cortex.2019.05.018
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was 228.6 msec. The average reaction time to the faster uni-

sensory stimulus (i.e., the perceived one) was 243.4 msec,

while it was 292.3 msec to the slower unisensory stimuli.

Thus, under conditions of partial consciousness,multisensory

facilitation was 14.8 msec. In order to determine whether the

partially perceived trials are indicative of an abrupt transition

(where partially perceived RTs would lie closer to full con-

sciousness than the mid-point between full consciousness

and no consciousness) or a graded transition (where partially

perceived RTs would lie closer to the linear interpolation be-

tween full and no consciousness, as opposed to closer to one

of the extremes) we performed a linear interpolation. The

interpolation between AV aware and unaware performance

suggests that the partial consciousness condition should

result in reaction times of about 237.9 msec. The mid-point

between this linear interpolation and the aware condition is

215.5 msec (this last number thus demarking the boundary

between evidence for categorical vs graded transition), which

is quicker than the partially aware condition, suggesting that

partially aware performance is closest to the linear interpo-

lation between fully aware and fully unaware cases (vs closer

to the fully aware case; see Fig. 1, bottom right panel; A/V

percept lies closer to AV than “none”, but closer yet to the

linear interpolation between AV and “none”).

In summary, whether building distinct neural models

formalizing the hypothetical relationship between con-

sciousness and feedback connections postulated by GNW and

LC theories (“a priori models”; Dehaene & Changeux, 2001;

Lamme, 2006), or building a “general” model in which both

reaction times (which here serves as a proxy for putative

phenomenal consciousness) and reports of consciousness

(access consciousness) are decoded, multisensory perfor-

mance appears to follow a graded pattern, being best (i.e.,

fastest) under full consciousness, intermediate under partial

consciousness, and worst when not perceived. The partially

perceived trials are closer to a true interpolation between fully

conscious and unconscious cases, than closer to either of

these. That is, there is no abrupt step, but a gradual transition.

3.2. Psychophysics

A linear mixed-effect analysis on RTs in trials where cues

were consciously perceived revealed a main effect of con-

gruency (F(1,29) ¼ 54.97, p < .001), and an interaction between

cue modality (A, V, or AV) and congruency (F(2,32148) ¼ 45.21,

p < .001). It was found that AV cues induced a larger congru-

ency effect (median of normalized congruency effect [RT

congruent/RT incongruent] ¼ .861 ± .03; a value of 1 indicates

no effect) when compared with A cues (.925 ± .02, p < .001; see

Fig. 2, bottom left panel, arrow (medians) on the x-axis). The

difference between AV and V cues did not reach significance

(.857 ± .03, p ¼ .40). The same RT analysis for trials where the

cue was not perceived (Fig. 2, bottom left panel, y-axis)

revealed a main effect of congruency (F(1, 28.5) ¼ 22.70,

p < .001), but importantly, no interaction between cue mo-

dality and congruency (F(2,22990) ¼ 1.93, p ¼ .15). Thus, un-

conscious cues in different modalities elicited equivalent

congruency effects (AV: .969 ± .02; A: .988 ± .02; V: .974 ± .01).

Taken together, these findings indicate that congruency

priming is present and modality-dependent when subjects
consciously perceive cues, but these effects disappear when

cues are not perceived (Fig. 2, bottom left panel). Perhapsmost

importantly, and in line with the modeling results, when

including in the analyses AV cues that were partially

perceived (as either A or V; Fig. 2, bottom left panel dashed

green arrow on y-axis and A/V percept on right panel), con-

gruency effects suggest a graded pattern. Thus, effects are

smallest when AV cues are not perceived (median of

normalized congruency effect ¼ .96 ± .02; t-test comparing

against 1.0, t(28) ¼ 3.56, p ¼ .001), intermediate when they are

partially perceived (.91 ± .03, t(28) ¼ 8.52, p < .001), and largest

when they are fully perceived (.86 ± .03; t(28) ¼ 10.84, p < .001;

one-way ANOVA, F(1.81, 50.67) ¼ 30.53, p < .001; see Fig. 2

bottom right panel A/V lying between “AV” and “none”).
4. Discussion

The vast majority of studies regarding perceptual conscious-

ness have contrasted neural states in which participants

report being aware versus unaware of stimuli in the envi-

ronment (Baars, 2002; Koch, Massimini, Boly, & Tononi, 2016).

These investigations agree that when a conscious report is

made, neural ignition brings online a large neural network

composed of early sensory areas and associative fronto-

parietal areas (Dehaene & Changeux, 2001). However, some

(Aru, Bachmann, Singer, & Melloni, 2012; Pitts, Metzler, &

Hillyard, 2014, 2012; Tsuchiya et al., 2015) have pointed out

that dichotomizing reports based on the presence versus

absence of consciousness does not directly address the

question of phenomenal consciousness (i.e., “what does it feel

like?”; Nagel, 1974), but rather focuses largely on the nature of

the report (access consciousness; Block, 1995). Thus, it re-

mains unclear whether phenomenal experience is graded, or

categorical, as would be suggested by the neural findings

pertinent to access consciousness.

Here we show that neural networks built in line with “all-

or-none” theories of consciousness may nonetheless produce

a graded relationship between the level of access and behav-

ioral performance. We hypothesized that access to con-

sciousness may be indexed by threshold crossings, as put

forward in neuroimaging studies demonstrating differences

in neural activation for aware versus unaware conditions (i.e.,

neural ignition; see Dehaene& Changeux, 2011 for review). On

the other hand, phenomenal consciousness may be driven by

a distinct operation e perhaps one more akin to decision-

making processes (i.e., area under the activation function;

integration operation). Such a view has been argued from a

philosophical perspective (Block, 1995), which states that ac-

cess and phenomenal consciousness are clearly related, but

may be dissociable. In a neural network designed to encap-

sulate this hypothesis we show that multisensory task per-

formance is best when cues meet an operational definition of

consciousness in line with theory (i.e., threshold crossing;

Dehaene & Changeux, 2011; Lamme, 2006), worst when the

stimuli are operationally not accessed at all, and intermediate

when they are only partially accessed. That is, while the net-

works are built in line with all-or-none indices of conscious-

ness, they have the capacity to produce a graded pattern of

reaction times e and thus potentially a graded pattern of
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phenomenology (assuming an over-simplified identify rela-

tion between the latter two). We conceive of the modeling

results not as evidence in favor of the fact that phenomenal

consciousness is graded e but as demonstrating that GNW

(Dehaene & Changeux, 2011) and LC (Lamme, 2006) and not

incongruent with this possibility.

In a final step, we queried whether the performance of

human observers would support a conceptual model where

access to consciousness is based on threshold crossings (as

demonstrated in neuroimaging; Dehaene & Changeux, 2011),

yet phenomenal consciousness may still be graded. Support

for this possibility came in the form of graded behavioral

performance dependent upon conscious access to the priming

cues. In more detail, we explicitly make the assumption that

phenomenological richness is related to task performance. In

these analyses, we employ both a direct measure of

phenomenological experience (i.e., participant's reports of

what they perceived) as well as an indirect one (i.e., the degree

to which multisensory presentations elicited location con-

gruency priming). Results demonstrate that the indirect

measure places multisensory presentation experienced as

unisensory closest to the arithmeticmean of full (audio-visual

content) and null (no content) perception, and not closer to

either of these extremes. These results highlight the fact that

while the majority of studies on perceptual awareness may

ask participants to categorize their conscious content in

discrete bins (perceived vs not perceived), indirect measures

of consciousness may suggest a graded pattern.

Taken together, the current findings argue that while

the vast majority of previous research regarding perceptual

consciousness has emphasized an abrupt transition be-

tween consciousness and absence of consciousness, this

does not preclude the presence of a gradual phenomenol-

ogy. Here we demonstrate via neural network modeling

that current theories of consciousness based on “all-or-

none” threshold crossings are not incongruent with the

possibility for graded phenomenology, and show that in-

direct behavioral measures of consciousness suggest a

graded pattern from no consciousness, to partial con-

sciousness, and finally full consciousness. The current

work is novel in that instead of indexing neural activity, we

provide in silico evidence that a network built in line with

“all-or-none” accounts of access consciousness may still

support gradual phenomenology. However, to provide

additional support for these findings, future work should

perform neuroimaging in conjunction with the current

psychophysical task in order to explicitly index the neural

non-linearity we infer to be occurring (according to previ-

ous research and theory; Dehaene & Changeux, 2011) when

participants report being aware (vs unaware) of the

different cues. By combining the current computational-

psychophysical approach with neuroimaging, the neural

networks could putatively equally be extended in order to

provide a grasp on neural processing. The models used

here are admittedly simplistic, and are not intended to

mimic actual neural processes; in fact, they do not even

spike. The modeling effort here is a simple conceptual

rather than neurobiological account suggesting that all-or-

none threshold crossing within a node can nonetheless
engender graded patterns in the network as a whole (or in a

different node). Further, it must be acknowledged that here

we equate behavioral performance with the richness of

phenomenal content, a widely held assumption (Lau &

Passingham, 2006), yet nonetheless an assumption. Lastly,

while we do consider the current results to argue against

consciousness being categorical, it is true that only three

locations in the phenomenological “state-space” were

indexed here (i.e., full, intermediate, and null). These are

sufficient to address whether consciousness is graded or

categorical, but constitute a minimal case. Future research

adding a third sense (e.g., touch) or graded levels of cue

stimuli could be employed to draw a more detailed picture

of the phenomenological landscape.
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