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Asymmetric Distribution of Epidermal Growth Factor Receptor 
Directs the Fate of Normal and Cancer Keratinocytes In Vitro
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Cancer cells are unequal in a tumor mass and in established cultures. This is attributable to cancer stem cells 
with the unique ability to self-renew and to generate differentiating progeny. This ability is controlled at the 
level of asymmetric division by mechanisms that are yet not well defi ned. We found that normal and cancer 
keratinocyte fate was linked to the asymmetric distribution of epidermal growth factor receptor (EGFR) during 
mitosis. Although essential for epithelial cell proliferation, differentiation, and survival, this receptor was not 
present on the surface of cells satisfying criteria for stem cells such as quiescence, competence to produce func-
tionally distinct daughters, high proliferative and clonogenic potential, sphere formation ability, and expression 
of stem cell markers. In contrast, keratinocytes displaying EGFR acquired a more differentiated phenotype, 
suggesting that EGFR may be involved in a switch from stem to transient amplifying cell fate. This switch was 
associated with changes in the expression profi le of cell cycle, survival, and mitochondria controlling proteins 
that varied between normal and cancer cells. In conclusion, it appears that an unequal distribution of EGFR at 
mitosis controls keratinocyte fate by balancing quiescence and cycling of EGFR− cells, clearly malfunctioning 
in cancer. We believe that our fi ndings provide mechanistic insights into the development of resistance to anti-
EGFR therapies.

Introduction

The cellular homeostasis of any adult tissue is main-
tained by a small subpopulation of undifferentiated and 

long living stem cells. These cells divide asymmetrically to 
reproduce self and to generate committed progenitor cells 
that are able to replace terminally differentiated, lost, and 
damaged cells of the tissue [1]. In addition to this fundamen-
tal role in tissue homeostasis and a contrario substantiat-
ing it, numerous fi ndings reveal aberrant maintenance and 
function of stem cells in cancers [2–5]. Indeed, accumulat-
ing data provide evidence that development of hematopoi-
etic and solid tumors relies on a small population of cancer 
cells known as cancer stem cells or tumor-initiating cells. 
These cells have the capacity to reinitiate tumor growth and 
recapitulate the cellular heterogeneity of the original tumor 
mass as a result of their self-renewing and differentiating 

abilities [6]. In normal tissue, these dual abilities, unique to 
stem cells, are functionally uncoupled at the level of cell divi-
sion by mechanisms controlling the production of 2 uneven 
cells and involving unequal distribution of molecular deter-
minants of cell fate, cell polarity, mitotic spindle orientation, 
and, as recently documented, unequal distribution of sur-
face receptors [2,7]. Along this line, unequal abundance of 
surface epidermal growth factor receptor (EGFR) was shown 
to specify asymmetry in cell fate of a subset of dividing 
embryonic murine cortical cells in response to environmen-
tal signals [8].

EGFR is a member of the ErbB family expressed in neu-
ronal, epithelial, and mesenchymal cells where it plays 
critical roles in proliferation, differentiation, and apoptosis 
[9–11]. In the epidermis, EGFR is responsible for maintaining 
the epidermal phenotype. Its strong expression is confi ned to 

STEM CELLS AND DEVELOPMENT
Volume 19, Number 2, 2010
© Mary Ann Liebert, Inc.
DOI: 10.1089/scd.2009.0150

08-SCD-2009_0150.indd   209 2/15/2010   11:42:07 AM



LE ROY ET AL.210

weeks later, the injected A431-GFP cells generated tumors 
that were recovered to make cell suspensions. Tumor cells 
were plated and A431-GFP+ cells were resorted according to 
their cell surface EGFR and GFP content and replated. To 
generate primary spheres, 2 × 104 cells were plated on ultra 
low adhesion plates (Corning Costar Co, ATGC, France) and 
cultured in DMEM/F12 medium supplemented with 20 ng/
mL EGF (Stem Cells Biotechnologies, Vancouver, BC), 1× 
B27-supplement (Gibco®, Invitrogen, France), and 20 ng/
mL rHu bFGF (PromoKine-PromoCell GmbH, Germany) in 
a humidifi ed 5% CO2 incubator at 37°C for 10 days. Spheres 
were dissociated by a brief incubation with trypsin–EDTA 
solution (Gibco®, Invitrogen, France) and replated at a den-
sity of 2 × 104 cells/6-well low adhesion plate. Spheres (big-
ger than ~50 cells) were counted under the microscope by 
2 independent experimentators. Colony-forming unit (CFU)  
and sphere-forming unit (SFU) potential (%) were estimated 
according to the formula: number of colonies or spheres/
number of plated live cells × 100.

Flow cytometry and cell sorting

The single cell suspension (4 × 105 cells/100 μL) of NHK 
(passage 0 or 1) and A431 cells were incubated in growth 
medium with phycoerythrin (PE)-conjugated anti-human 
EGFR antibody (Abcam, Paris, France) alone or in combina-
tion with fl uorescein isothiocyanate (FITC)-conjugated anti-
CD44 or CD95 antibodies (Immunotools, Germany) for 30 
min at 37°C. Antibodies were used at a 1:50 dilution. After 
incubation, cells were rinsed with growth medium, centri-
fuged, resuspended in 500 μL of medium, and placed on ice 
before being analyzed by fl ow cytometry. Dead or apoptotic 
cells were excluded according to morphology and propid-
ium iodide (PI; 2 μg/mL of Sigma Aldrich, France) labeling 
preceding acquisition. Acquisition was done on an EPICS 
XL-4 MCL fl ow cytometer (Beckman Coulter) and analyzed 
using Expo32 software. FITC, PE, and PI fl uorescence inten-
sities were recorded on FL1, 2, and 3 channels, respectively. 
Quadrants were determined based on the negative control 
staining with a corresponding isotype antibody.

Cell cycle analysis. Suspension of non-sorted cells was 
stained with FITC-conjugated anti-EGFR (Santa Cruz 
Biotechnology, Germany) antibody for 30 min at 37°C in 
darkness, then rinsed twice with PBS, fi xed with ethanol 
70%, and incubated at least 1 h at −20°C. After rinsing 3 
times with cold PBS, cells were incubated with 50 μg/mL PI 
and 5 μg/mL RNase in PBS for 20 min at 37°C. Reaction was 
stopped by placing cells onto ice just before fl ow cytometry 
analysis.

Rhodamine123 (Rh123) exclusion assay. Cell suspension of 
106 cells/mL in DMEM/10% FBS was loaded with 0.1 μg/mL 
Rh123 (1 mg/mL stock dissolved in DMSO) for 20 min at 
37°C, rinsed twice, and resuspended in 0.5 mL of medium. 
Cells were placed at 37°C for an additional 60 min. After 
rinsing, cells were stained with PE-conjugated EGFR anti-
body for 30 min at 4°C. Two μg/mL PI was added just prior 
to fl ow cytometric analysis to discriminate dead cells. A 
minimum of 10,000 live cells was acquired. Rh123 green and 
PE and PI red fl uorescence was recorded on FL1, FL2, and 
FL3 channels, respectively. Cytometric data were analyzed 
with Expo32 software. Cell sorting was carried out on either 
autoMACS Miltenyi Biotech columns according to included 
specifi cations and/or on an EPICS-ALTRA sorter (Beckman 

the basal cell layer of proliferating keratinocytes and dimin-
ishes progressively in suprabasal layers upon advancing dif-
ferentiation [11–14]. Not all keratinocytes with lower levels 
of cell surface EGFR belong to the differentiation cell com-
partment. Fortunel et al. [14] demonstrated that in the native 
epidermis a subpopulation of these cells was endowed with 
the stem cell abilities to self-renew and produce differentiat-
ing progeny. However, EGFR is frequently overexpressed in 
epithelial tumors and its constitutive expression is associ-
ated with poor prognosis [11,15], implying that EGFR+ rather 
than EGFR− cells have tumorigenic potential. Since, accord-
ing to the cancer stem cell concept of tumorigenesis [16,17], 
the probability that all cancer cells have stem cell capacity is 
relatively low, we question whether cultures of cancer cells 
overexpressing surface EGFR contain a scarce subpopula-
tion of cells devoid of surface EGFR and whether this would 
direct cell fate choices in cancer. We found EGFR− cells in 
the A431 squamous cell carcinoma cell line and provide evi-
dence that these cells function as self-renewing cancer stem 
cells producing EGFR+ progeny that progressively dominate 
the cell culture. Considering the importance of EGFR as a 
target for therapeutic intervention in epithelial tumors, our 
demonstration that EGFR− cells have traits of cancer stem 
cells should be taken into consideration since these cells 
may be the origin of therapy resistance observed in clinical 
settings.

Materials and Methods

Cell culture

Squamous cell carcinoma (SCC) A431 cell line [18] was 
maintained in DMEM supplemented with 10% fetal bovine 
serum (FBS) and 1% penicillin/streptomycin (Gibco®, 
Invitrogen, France) in a humidifi ed 5% CO2 incubator at 37°C. 
Primary cultures of SCC, basal cell carcinoma (BCC), and 
breast skin normal human keratinocytes (NHK) were gen-
erated from 10 discarded surgical specimens as described 
previously [19,20]. Storage and use of human biological 
samples were declared and performed according to ethical 
rules approved by the Department of Health, France. These 
latest cells (passage 0 and/or P1) were maintained in defi ned 
K-SFM supplemented with 1% penicillin/streptomycin 
(Gibco®, Invitrogen, France). To visualize EGFR, either 10 μg/
mL of Alexa 488-coupled EGF (Molecular Probes, Eugene, 
OR) was added to live cells and images were acquired using 
Time Lapse AS MDW (Leica®) video microscopy or cells were 
stained with FITC-conjugated anti-EGFR antibody, fi xed, and 
photographed using a DMR microscope (Leica®). To assess 
colony-forming units (CFU), sorted or unsorted cells were 
plated onto 35-cm plates at various (100–30,000 cells/plate) 
densities. Three weeks later, colonies were isolated using 
glass cloning rings or counted after staining with crystal 
violet. A minimum of 32-cell aggregates were considered as 
a small colony (paraclone) and cell aggregations >3 mm in 
diameter as a large colony (holoclone). An A431-GFP cell line 
expressing traceable green fl uorescent protein (GFP) was cre-
ated by injecting subcutaneously into 6-week-old SCID mice 
106 per mouse of A431 cells stably expressing GFP. The A431-
GFP stable transfectants were created in our lab by selecting 
and amplifying a single clone of neomycin (600 μg/mL)-
resistant transfectants bearing the pcDNA3-GFP construct. 
For the injection, only FACS-sorted GFP+ cells were used. Six 
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different approaches to assess EGFR distribution in dividing 
normal and cancer keratinocytes employing fl uorescence 
microscopy. Images in Figure 1A show human keratinocytes 
displaying an uneven distribution of EGFR in the newly 
born daughter cells thereby illustrating asymmetric mitosis. 
Unequal allocation of EGFR was found in very few divid-
ing cells in both normal (NHK) and cancer, squamous and 
basal cell carcinoma cultures (SCC and BCC, respectively). 
The observed asymmetric distribution of EGFR in normal 
and 2 different cancer keratinocytes corroborated, to some 
extent, the universality of the phenomenon in the epidermis 
and posed the question whether EGFR functions as a deter-
minant of keratinocyte fate as it does in dividing neuronal 
cells [8].

EGFR− keratinocytes were rare and immature and 
excluded rhodamine 123

In normal human epidermis epidermal growth factor 
receptor was found mainly in the basal layer of prolifera-
tive keratinocytes and, to a lesser extent, in differentiating 
keratinocytes of the suprabasal layers (Fig. 1B). At closer 
inspection of the basal cell compartment, one could argue 
that there are single EGFR− cells. Assessment of the EGFR− 
versus EGFR+ populations in normal human epidermis (10 
samples) by fl ow cytometry revealed that indeed EGFR− cells 
constituted a scarce proportion, that is 3.0% ± 1.6% of total 
live epidermal cells and 1.2% ± 0.6% of keratin 15 and/or 14 
positive keratinocytes. They were of low forward scatter (FS) 
refl ecting their small size and low side scatter (SS) refl ecting 
their low granularity (Fig. 1C). We previously demonstrated 
that this size and structure profi le identifi es undifferenti-
ated keratinocytes, which increase their size and granular-
ity as they enter the differentiation program [20,21]. The light 
microscopy image, showing morphological uniformity and 
roundness of cells within a colony formed by primary EGFR− 
normal keratinocytes (Fig. 1C), confi rmed undifferentiated 
state of EGFR− cells. Cells with this morphological profi le 
were previously identifi ed as side population (SP) of epider-
mal stem cells excluding Hoechst 33342 [22]. Interestingly, 
small EGFR− cells effi ciently excluded Rhodamine 123 
(Rh123), another SP marker shown to select for the most 
primitive hematopoietic stem cells and commonly used to 
determine a pool of quiescent stem cells [23–26]. In addition, 
the small EGFR− cells described were positive for an epithe-
lial stem cell marker, CD44 [27,28] but negative for proapop-
totic marker CD95/Fas [29] (Fig. 1D). Backward FS and SS 
analysis of living Rh123−, CD44+ and CD95− (Fig. 1E) cells 
co-localized them with the EGFR− cells, hence showing that 
human normal epidermis contains a restricted population 
of small-sized EGFR−, Rh123−, CD44+, CD95− cells, with an 
immature undifferentiated phenotype.

An EGFR− subpopulation was found in skin tumors 
and in A431 SCC cell line

A rare EGFR− subpopulation (0.8%–3.7%) displaying an 
undifferentiated phenotype was also found in basal cell car-
cinoma (BCC) and SCC tumor samples as well as in the A431 
SCC cell line. This intriguing fi nding prompted us to concen-
trate our efforts on defi ning EGFR− cells in the A431 cell line 
commonly used as a model of EGFR overexpressing cells, 
and compare the results with normal control keratinocytes. 

Coulter). After exclusion of debris and cell doublets, collec-
tion gates were set according to the negative control con-
taining either unstained cells and stained with irrelevant 
isotype matching antibody or cells devoid of fl uorescent 
dye. EGFR-labeled cells with fl uorescence intensity equal to 
the negative control were considered as the EGFR− subpopu-
lation, the remaining constituted the EGFR+ compartment. 
Collected subpopulations of cells were centrifuged, rinsed, 
and replated either for resorting or for sphere generation, 
CFU analysis, and immunohistochemistry.

Immunofl uorescence

Paraffi n-embedded sections of human epidermis were 
deparaffi nized, rehydrated with PBS, and saturated 30 min 
in PBS supplemented with 1% BSA plus 1% goat serum. Then 
monoclonal FITC-conjugated anti-EGFR antibodies (Santa 
Cruz Biotechnology, Germany) were added (dilution 1/50) 
and slides were incubated for 2 h at room temperature in 
PBS/1% BSA/1% goat serum. For cell slides, cell cytospins 
were permeabilized with 0.1% Triton X-100, rinsed, and sat-
urated as above. Then they were incubated with primary 
antibodies diluted in blocking solution (PBS/BSA/serum) at 
4°C overnight and with fl uorescent secondary antibodies 30 
min at room temperature. After immunoreactions all slides 
were rinsed twice in PBS for 15 min, mounted under a cover-
slip with Vectashield Mounting Medium with DAPI (Vector 
Laboratories, Burlingame, CA), and photographed using 
Leica® fl uorescence microscope. Antibodies, anti-human 
Keratin 14 rabbit polyclonal were from Covance, California, 
USA, anti-human Keratin 10 mouse monoclonal from 
Progen Biotechnik, Germany, and corresponding secondary 
antibodies (dilution 1/1,000) PE-conjugated anti-rabbit and 
FITC-conjugated anti-mouse were from Molecular Probes, 
Oregon, USA.

Western blot analysis

Western blot analysis was performed using ready-to-use 
NuPAGE® 4%–12% Bis–Tris acrylamide gels (Invitrogen, 
France) according to the supplier instructions. Blots were 
probed with appropriate primary antibodies and horserad-
ish peroxidase-conjugated anti-secondary antibody (Bio-
Rad, France). Immunodetection was performed using an 
ECL + chemiluminescence kit from Amersham.

Statistical analysis

All results are expressed as the mean ± SEM of at 
least 2 independent experiments performed in tripli-
cate. Comparison between means was assessed using the 
Student’s t-test for unpaired data. If unequal variance was 
observed, the Welch’s correction was applied. A P value 
≤0.05 was considered signifi cant.

Results

Asymmetric distribution of EGFR in dividing skin 
keratinocytes

Given that normal keratinocytes expressing low levels of 
EGFR on the cell surface have stem cell-like properties [14] 
and that its asymmetric distribution during division of neu-
ral progenitors contributes to different cell fates [8], we used 
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revealed that signifi cantly more EGFR− than EGFR+ cells 
were in the G0/G1 phase of the cell cycle and signifi cantly 
less in G2/M, demonstrating a greater cycling activity of 
the latter and an inclination mainly toward G0/G1 cell cycle 
arrest of the former, in both NHK (Fig. 2E) and A431 (Fig. 
2F) cultures. Interestingly, however, a signifi cantly higher 
number of EGFR− A431 cells than NHK was in the S-phase 
of the cell cycle (34.9% ± 6.4 % vs. 1.9% ± 1.0 % in NHK) 
likewise their cycling EGFR+ counterparts. This set NHK 
apart from A431 cultures, and suggested that EGFR− A431 
cells enter the cycle with accelerated kinetics and that this 
process, apparently EGFR-independent, contributed to 
the generation of highly proliferating EGFR+ cells. Since a 
functionally important characteristic of adult stem cells is 
their quiescence [32–34], the relative arrest of EGFR− cells at 
the G0/G1 phase of the cell cycle in conjunction with their 
immature morphology, SP phenotype, and their ability to 
divide asymmetrically as well as express the CD44 stem cell 
marker advocated for classifying them as stem-like cells. 
This assumption required confi rmation by clonogenic and 
self-renewal assays.

Cells with the EGFR− phenotype constituted 0.8% ± 0.4% 
of total live A431 cells (Fig. 2A) and were Rh123− in signifi -
cant contrast to a majority of EGFR+ cells that were Rh123+ 
(Fig. 2B, P ≤ 0.001). However, as shown in Figure 2C, a small 
subpopulation of A431 EGFR+ cells also were Rh123−, indi-
cating that the SP cell compartment was not homogeneous, 
and that EGFR may consent to a fi ner resolution within this 
compartment. Interestingly, the size of the EGFR+ Rh123− 
subcompartment was found signifi cantly larger among the 
total live A431 cell population than in their normal counter-
parts (Fig. 2D, P ≤ 0.001), suggesting that one major differ-
ence between normal and A431 cancer cells may reside in 
this subcompartment.

EGFR− cells were more quiescent than their EGFR+ 
progeny in NHK but not in A431 cultures

Activation of the EGFR-signaling pathway stimulates 
cell exit from quiescence and its entry into the S-phase of 
the cell cycle [30,31]. Therefore, cells devoid of EGFR would 
be expected to remain quiescent. Flow cytometry analysis 
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FIG. 1. Keratinocyte cultures contain epidermal growth factor receptor (EGFR–) cells. (A) Asymmetric distribution of 
EGFR in dividing primary normal human keratinocytes (NHK) labeled with FITC-conjugated anti-EGFR antibody (1 and 
2) and in squamous cell carcinoma (SCC) A431 cell line (3 and 3′) and primary basal cell carcinoma (BCC) cells (4 and 4′) vi-
sualized with Alexa 488-coupled EGF. 1 and 2 refers to 2 individual NHK and 3, 3′, 4, and 4′ to, respectively, single SCC and 
BCC cell at 2 time points during division. NHK and BCC cultures were treated with 2 μM cytochalasin D for 20 h to prevent 
cytokinesis of dividing cells. Scale bar = 10 μm. (B) EGFR distribution in normal human epidermis (EPI). Arrow points to 
EGFR− cell in basal cell layer. (C–E) EGFR− NHK show evidence of immaturity, exclude Rhodamine 123 (Rh123), and express 
stem cell but not proapoptotic markers. Flow cytometry profi les of NHK labeled with either PE- or FITC-conjugated anti-
EGFR, -CD95, and -CD44 antibodies and with Rh123. FS—forward scatter (size) and SS—side scatter (granularity) param-
eters determined that EGFR−, Rh123−, CD44+, and CD95− cells (C and E in red) were of a small size and low granularity. 
Zoomed 10× light microscopy image of an EGFR−-derived colony of normal human keratinocytes (C). Co-localization of 
EGFR with Rh123, CD44, and CD95 in NHK populations (D). All dot plots are derived from propidium iodide (PI)-negative 
cells. Numbers indicate percentage of cells with respective phenotypes. Representative data of 2–10 experiments.
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further presupposed that a switch from the EGFR− to EGFR+ 
phenotype might be associated with a conversion of stem-
like into fast amplifying cells contributing to an increase in 
cellular mass, to cellular hierarchy, and consequently, to the 
heterogeneity of A431 cultures.

Sphere-inducing conditions stimulate expansion of 
the EGFR− cell compartment

One attribute of stem cells is their ability to form spheres 
[39,40]. We questioned whether sphere growth conditions 
known to stimulate stem cell expansion could infl uence the 
size of the EGFR− compartment. Interestingly, as shown in 
Figure 3C, spheres contained a higher number of EGFR− cells 
than in monolayer A431 cultures (P ≤ 0.0001). Accordingly, 
when dissociated and replated under sphere-forming condi-
tions more secondary spheres were formed (Fig. 3D), dem-
onstrating that sphere conditions augmented the number of 
cells with the sphere-forming ability. The number of spheres 
was directly proportional to the size of the EGFR− cell com-
partment arguing further that EGFR− cells could constitute 
a pool of stem-like cells.

EGFR− cells self-renewed at a constant level and 
produced EGFR+ progeny

To address the relationship between EGFR phenotype 
and cell position in hierarchy, we reinforced our conclusion 
that an EGFR− subpopulation was enriched in stem-like 
cells by assessing self-renewal and differentiation abilities 

Lack of EGFR on the cell surface correlated with the 
superior clonogenic and regenerative potentials of 
A431 cells

To determine the identity and functionality of rare 
EGFR− keratinocytes, we sorted the easily expandable A431 
cells into EGFR− and EGFR+ fractions. Several parameters 
defi ning stem cells were then assessed in these fractions. 
Mackenzie et al. [27] argued that 3 criteria are suffi cient to 
indicate the persistence of a stem cell pattern in vitro: gen-
eration and amplifi cation of cell hierarchy, self-renewal, and 
differentiation. Intriguingly, despite the well-established 
connection between EGFR overexpression and uncontrolled 
proliferation of A431 cells [35,36], a clonogenic assay of sorted 
cells determined that it were the EGFR− not EGFR+ cells that 
formed colonies with a signifi cantly higher effi ciency (Fig. 
3A, P ≤ 0.0001). Interestingly, the colonies formed by EGFR− 
cells were large, smooth-edged, and relatively homogeneous 
(Fig. 3B) resembling stem cell-derived holoclones described 
by Barrandon and Green [37]. An analysis of individual 
small and large A431 clones revealed that only large clones 
had the capacity to reform holoclones and give rise to small 
paraclones (Fig. 3B), thus reconstituting the heterogeneity of 
colonies formed by unsorted A431 cells (Fig. 3B). In contrast, 
paraclones produced only paraclones, known to be derived 
from transient amplifying, destined-to-differentiate prog-
eny of stem cells [38]. Assuming that heterogeneity of colo-
nies refl ects the uneven proliferative potential of cells within 
the population [37], we concluded that the holoclone-form-
ing EGFR− cells represent a stem-like cell compartment and 

FIG. 2. Epidermal growth factor receptor (EGFR–) cells were quiescent in normal human keratinocytes (NHK) but actively 
cycling in A431 cell line cultures. (A) EGFR− cell population in A431 cell line: forward scatter (FS) of anti-EGFR-PE-labeled 
cells. (B) A431 EGFR− cells effl ux Rhodamine 123 (Rh123), a marker of side population cells. Graphic display of fl ow cytom-
etry results illustrating differences in Rh123 fl uorescence intensity between EGFR− and EGFR+ cells. (C) Flow cytometry 
profi le of EGFR/Rh123 double-stained A431 cells and (D) graph showing the percentages of EGFR+ cells within the Rh123− 
subcompartment of A431 and NHK populations. Student’s t-test P ≤ 0.001 (***). Boxed areas indicate EGFR− cells and the 
accompanied numbers their percentage in total population. Representative fl ow cytometry results of 3 independent experi-
ments. (E and F) Cell cycle profi le of EGFR− and EGFR+ of normal (E) and A431 (F) keratinocytes. Flow cytometry analysis of 
live cells labeled with anti-EGFR-FITC antibody and co-stained with PI after fi xation. Cell cycle profi le of gated: EGFR− (left) 
and EGFR+ (right) cells. Analysis of 2–3 independent experiments performed in triplicate.
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NHK, BCC, and SCC cell cultures generated in the lab from 
the respective tissue samples revealed that the ability of 
EGFR− cells to reproduce self and to generate numerous 
EGFR+ progeny is not restricted to the A431 cell line.

Interestingly, the percentage of EGFR− and EGFR+ cells 
was maintained repeatedly at a constant level (Table 1) 
suggesting that EGFR− cells divided asymmetrically to 
self-renew and to produce symmetrically dividing EGFR+ 
cells. The comparative genomic hybridization (CGH) anal-
ysis of DNA isolated from A431 EGFR− and EGFR+ cells 
(Supplementary Figs. 1 and 2; Supplementary materials are 
available online at http://www.liebertpub.com/) shows 
analogous chromosomal aberrations at high stringency, con-
fi rming their clonal origin and supporting the notion that 
EGFR+ cells were likely derived from EGFR− precursors. 
This conclusion was reinforced by experiments with sorted 
EGFR− GFP+ cells that acquired the EGFR+ GFP+ phenotype 
during culturing (Fig. 4A and 4B). Interestingly, EGFR+ cell-
derived colonies always contained a small subpopulation 

of EGFR− A431 cells. Colonies formed by sorted EGFR− cells 
were consecutively resorted and replated several times. As 
shown in Table 1, A431 EGFR− cells always generated EGFR+ 
cells dominating the regrowing cultures. Similar data 
obtained with 2 consecutive FACS fractionation of primary 
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FIG. 3. A431 sphere cultures favored expansion of the epidermal growth factor receptor (EGFR–) cells endowed with the 
superior to EGFR+ counterparts clonogenic and proliferative potentials (A and B). Control unsorted or FACS-sorted cells 
were plated at a colony-forming density (3,000 cells/35-mm plate) and cultured for 21 days before crystal violet staining and 
colony counting. (A) Colony-forming unit (CFU) data estimated for EGFR+ and EGFR− cells. (B upper) Representative plates 
showing colonies formed by unsorted control and FACS-sorted EGFR+ and EGFR− cells. Data of 5 independent experiments 
performed in triplicate. Note the difference in size and shape of colonies. Student’s t-test with Welch’s correction P ≤ 0.0001. 
(B lower) Representative images of isolated and replated paraclones (left) and holoclones (right). Note that paraclones repro-
duced paraclones while holoclones generated holoclones and some paraclones or middle size meroclones. (C) Frequency of 
EGFR− cells in adherent and sphere cultures. Inserted into a bar image shows representative morphology of spheres. (D) 
Frequency of primary and secondary spheres estimated in 4 independent experiments performed in triplicate. Student’s 
t-test P ≤ 0.0001 (****).

Table 1. EGFR− Cells Self-Renewed and 
Produced EGFR+ Progeny

 %EGFR– %EGFR+

FACS 1 0.8 ± 0.4 99.2 ± 0.6
FACS 2 1.2 ± 0.4 98.8 ± 0.6
FACS 3 0.8 ± 0.4 99.2 ± 0.6
FACS 4 0.9 ± 0.3 99.1 ± 0.7

FACS-sorted EGFR− cells were replated and cultured for 

10 days before consecutive sorting. Data of 3 independent 

experiments of successive sorting plated in triplicate.
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CD44 and up-regulated CD95 (Fig. 1D), EGFR+ A431 cancer 
cells remained CD44+/low and CD95− (Fig. 5A). The observed 
correlation between the display of EGFR and both CD44 and 
CD95 expression is consistent with the previously estab-
lished interaction between these factors [43–45] and hinted 
that an exposure of CD44 and CD95 on the cell surface may 
be linked to a switch from EGFR− to EGFR+ phenotype, 
apparently malfunctioning in A431 cancer cells.

To defi ne molecular events associated with the transition 
from the EGFR− to EGFR+ phenotype in cancer and normal 
keratinocytes, we subdivided A431 cells into EGFR− and 
EGFR+ fractions and performed a comparative study of 
their transcripts using SuperArray cDNA membranes pro-
fi ling stem cell and apoptosis genes. The products of sev-
eral differentially expressed transcripts (data not shown) 
were reanalyzed via western blotting (Fig. 5B). As expected, 
EGFR was not expressed in EGFR− NHK. It was, however, 
detectable in EGFR− A431 cells, though at a signifi cantly 
lower level than in EGFR+ cells. This was consistent with 
our data in Figure 1A and suggested that similar to other 
cancer cells [46], A431 EGFR− cells may contain intracellular 
EGFR. Both normal and A431 cancer EGFR− cells expressed 
higher levels of keratin 15 (K15), a marker of epidermal stem 
cells [47,48], hypoxia-inducing factor 1α (Hif-1α), peroxisome 
proliferator-activated receptor γ co-activator-1 α (PGC-1α), 
and P-cadherin p55 form, than EGFR+ cells. Alternatively, 
the EGFR+ cells up-regulated K14, a marker of basal kera-
tinocyte [49], anti-apoptotic Mcl-1, Rac1 belonging to Rho 
family of GTPases and implicated in keratinocyte differen-
tiation [50], RBPJκ transcriptional repressor involved in the 
Notch-signaling pathway [51,52], and nuclear respiratory 
factor 1 (NRF-1) implicated in mitochondrial biogenesis [53]. 
Finally, we identifi ed several proteins that were differen-
tially expressed in A431 cancer and normal keratinocytes 
upon the switch from EGFR− to EGFR+ phenotype, includ-
ing histone deacetylase 1 (HDAC1), p18INK4C, RhoA, cyclin 
D1, and CDK2, all of which are related to cell cycle regula-
tion, suggesting that normal and cancer cells differ at the cell 
division level. Interestingly, some of the proteins (cyclin D1 
and RhoA) not expressed by EGFR− NHK were up-regulated 
in EGFR− A431 cells, while others (p18INK4C) were uniquely 
expressed in the A431 cell line.

Because mouse epidermal stem cells located in the bulge 
of hair follicles already express K14 [54], we further assessed 
K14 expression in EGFR− and EGFR+ subpopulations of 
human normal (Fig. 5C) and A431 (Fig. 5D) keratinocytes 
by immunohistochemistry. As expected from a marker of 
the basal cell compartment, K14 was mainly expressed by 
keratinocytes expressing high levels of EGFR. Still, kerati-
nocytes expressing both markers in any combination could 
be found, confi rming that K14 is not an exclusive marker of 
stem cells. However, the presence of EGFR− K14+ A431 cells 
is coherent with the presumed stemness of keratinocytes 
devoid of surface EGFR.

To summarize, we demonstrated that normal epider-
mis and cancer keratinocyte cultures, of mainly A431 SCC 
but also primary SCC and BCC cells, contain a small sub-
population of EGFR− cells endowed with stem-like proper-
ties, including high clonogenic and proliferative potential, 
expression of stem cell markers, propensity for quiescence, 
and competence to produce phenotypically and function-
ally distinct daughters. That EGFR− cells may function as 
 stem-like cells was further supported by our supplementary 

(0.9%–1.2%) of EGFR− cells. Moreover, A431 cultures consist-
ing of only EGFR+ cells, that is, depleted of EGFR− cells, reac-
quired the EGFR− component at levels similar to unsorted 
A431 populations (data not shown). Assuming a 100% purity 
of sorted cells, these data suggested that in the absence of 
the EGFR− component, a strictly defi ned portion of EGFR+ 
cells reverted to the EGFR− phenotype.

Molecular differences between normal and cancer, 
and between EGFR− and EGFR+ cells: cell surface 
markers and gene expression profi les

Normal cells can provide insight into the behavior of 
cancer cells. To determine a possible functional relationship 
between EGFR abundance and cell fate, we compared redis-
tribution of CD44, one of the most commonly used mark-
ers of normal and cancer stem cells [28,41], and CD95 in 
EGFR− and EGFR+ normal and A431 cancer keratinocytes. 
CD95 is expressed constitutively by basal keratinocytes [42], 
which are destined-to-differentiate progeny of epidermal 
stem cells. Hence in this study, CD95 served as a marker 
of committed-to-differentiate keratinocytes. Interestingly, 
fl ow cytometry analysis revealed that whereas in NHK the 
transition from EGFR− toward EGFR+ cells down-regulated 
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a model in which an EGFR− cell would retain quiescence and 
divide infrequently both to reproduce self (to maintain a con-
stant G0 pool) and an actively cycling EGFR+, hence respon-
sive to EGFR mitogenic signals, daughter cell (to replenish 
the keratinocyte population). In our proposed model, the 
acquisition of EGFR on the cell surface would locate a criti-
cal point of the phenotypic and functional switch between 
these 2 fates.

This model is strongly supported by our data and is consis-
tent with the general understanding of the vital role of EGFR 
in development, proliferation, differentiation, and survival 
of keratinocytes evidenced by the severity of phenotypes 
in mice with compromised EGFR expression [11–13,55–58]. 
The epidermis in these cases was immature and thin with 
fewer layers of abnormally differentiating cells and with an 

data (Supplementary Fig. 3) showing that EGFR− but not 
EGFR+ BCC cells were capable of reconstructing multilay-
ered, although morphologically abnormal, epidermis in 3D 
skin equivalent cultures known to recapitulate the in vivo-
like program of keratinocyte differentiation.

Discussion

The fi ndings of this study convey 2 major messages: fi rst 
that EGFR can be asymmetrically distributed in dividing 
keratinocytes and prospectively may function as an epi-
thelial cell fate determinant, and second that a small sub-
population of cancer keratinocytes endowed with stem cell 
attributes may be the keratinocytes devoid of surface EGFR. 
The deduced interpretation of our fi nding led us to propose 
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of EGFR+ fast dividing stem cells into a quiescent, critical 
for preserving self-renewal, EGFR− state. The reversibility 
of stem cell status could explain why starting from either 
EGFR− or EGFR+ sorted cells, the same steady-state ratio of 
EGFR− and EGFR+ subpopulations is obtained after 9 days 
of culturing. The constant value of the fi nal ratio, identical 
to that in unsorted cultures, strongly suggests that we are 
not dealing with an accidental product of culture conditions 
but with some inherent properties of the cell population es-
sential for its perpetual renewal. In this respect, the ability 
of sorted EGFR+ cells to reestablish the EGFR− cell compart-
ment resembles replenishment of empty stem cell niches 
in vivo [64–66]. The presence of EGFR+ cells within the 
Rh123− subpopulation favors such interpretation. Minute in 
number in NHK but overrepresented in the A431 cancer cell 
line, the Rh123− EGFR+ component mirrored the frequency 
of EGFR− cells in S-phase, implying a mechanistic link be-
tween the activation into cell cycle and EGFR acquisition. 
Such a link is supported by the observed asymmetric distri-
bution of EGFR at mitosis and by the apparent lack of EGFR− 
cells in the G2/M phase, placing the EGFR acquisition after 
S-phase.

The switch from EGFR− to EGFR+ was accompanied by 
the expression of genes involved in DNA replication and 
cell cycle progression. Interestingly, however, and consistent 
with differences in the EGFR− cell cycle kinetics, the expres-
sion pattern of these genes differed between normal and 
A431 EGFR− cells, pointing to the possible signaling path-
ways that may be involved in the reversibility of the qui-
escent/activated state of these cells. Particularly interesting 
is the striking difference in RhoA expression, a coordinator 
of cytoskeleton organization during cell division [67], and 
in cyclin D1, a downstream effector of RhoA, suggesting a 
reverse relationship between their presence and cell quies-
cence. Also, high levels of Hif-1α and its upstream inducer 
PGC-1α [68] in EGFR− reproductive cells appears interesting 
in this context. Both acting in concert to suppress mitochon-
drial function [69–71], a prerequisite for stem cell quiescence 
[69,71,72], may be responsible for relative quiescence of stem 
keratinocytes. In favor of this suggestion is the recently dis-
covered c-Myc/Hif-1α crosstalk contributing to cell cycle 
arrest [73,74] and data showing that mitochondria are less 
developed in adult stem cells than in their differentiating 
progeny [75]. Indirect support for the possible involvement 
of Hif-1α in imposing the A431 cell quiescence also provides 
the observation that hypoxia-prone sphere cultures stimu-
lated expansion of the EGFR− cell compartment.

The ability of epidermal stem cells to oscillate between 
quiescence and proliferation has been recently documented 
in mouse skin where NFATc1 transcription factor negatively 
regulating CDK4 was identifi ed as the key factor reinforcing 
quiescence, thereby protecting stem cells from exhaustion 
[32]. We speculate that, analogous to NFATc1, shunning of 
surface EGFR preserves EGFR− cells quiescence and conse-
quently their long-term maintenance, simply by rendering 
them unresponsive to mitogenic stimuli. While this seems 
to apply to NHK, the accelerated cell cycle kinetics of A431 
EGFR− cells setting apart cancer and NHK points to the 
existence of EGFR-independent mechanism(s) operating in 
A431 cells that allows EGFR− stem-like cells to overcome 
quiescence without exhaustion. Although these protective 
mechanisms remain to be elucidated, an intriguing presence 
of p18INK4c in cancer A431 but not in normal keratinocytes 

increased apoptotic index. If EGFR− cells were precursors of 
EGFR+ cells as we suggest, the compromised EGFR function 
would not affect the EGFR− reproductive compartment but 
would target the compartment of EGFR+ progeny leading to 
the exact same fi ndings as in the EGFR-defi cient mouse mod-
els and in anti-EGFR-treated cancer patients [11,15,55–58].

In the epidermis, EGFR-displaying cells are primarily 
destined-to-differentiate transient amplifying daughters of 
stem cells located in the basal layer [11–15,56]. After a short 
period of intense proliferation, the EGFR+ cells, while mov-
ing to the suprabasal layer, enter the differentiation program 
[11–13] linked to the cell death pathway [20,21]. Conceivably, 
to stay quiescent and undifferentiated, a stem cell should 
inactivate the EGFR-signaling pathway. We provide evi-
dence demonstrating that in the epidermis and in A431 
SCC cell line this may be achieved, though not exclusively, 
by evading EGFR on the cell surface. Accordingly, in our 
preliminary xenograft experiments, only EGFR− cells were 
tumorigenic in SCID mice (data not shown).

A role of EGFR in directing the fate of keratinocytes was 
fi rst indicated by studies in which 20% of epidermal kerati-
nocytes with the lowest content of surface EGFR displayed 
traits of epidermal stem cells [14]. Our study not only con-
fi rmed these fi ndings but also refi ned stemness to 0.8%–1.2% 
of EGFR− of normal and A431 cancer keratinocytes. This fre-
quency approximates the occurrence of long-term repopulat-
ing cells found in human epidermis by Schneider et al. [59]. 
Whether a subpopulation of EGFR− Rh123− keratinocytes 
represents the long-term repopulating cells remains to be 
experimentally validated. Interestingly, however, consistent 
with the consensus that the repopulating potential of stem 
cells is directly linked to their cycling quiescence [32,60,61], 
the majority of EGFR− keratinocytes was confi ned to G0/G1 
cell cycle arrest and was residing within the Rhodamine 123 
excluding subpopulation commonly associated with the SP 
compartment of quiescent stem cells [23–26]. This suggests 
that the EGFR− Rh123− phenotype may defi ne the quiescent 
subpopulation of stem keratinocytes.

The ability of the EGFR+ cell-derived cultures to reestab-
lish the EGFR− cell compartment is particularly interesting. 
We suggest that in our experimental settings some of the 
EGFR+ cells may be capable of reverting to the EGFR− pheno-
type to compensate for loss of the EGFR− cell compartment. 
One mechanism that can cause such cell reprogramming 
involves resetting quiescence of cycling stem cells [60–63] 
reviewed recently by Ratajczak [61]. Wilson et al. [60] showed 
that hematopoietic stem cells (HSC) can oscillate between 
2 functional states, a quiescent CD34− state and an active 
CD34+ state. Ratajczak [61] also pointed that CD34 expres-
sion refl ects the activation/kinetic state of HSC. The main 
point stressed by both is that the shift from quiescent to ac-
tivated HSC is reversible. This reversibility of HSC appears 
to be their inherent property and Glauche et al. [63] propose 
a mathematical model in which stem cells reversibly adopt 
their proliferation/quiescent state to systemic needs [63]. In 
our model, we speculated that A431 EGFR− quiescent stem 
cells may acquire EGFR on the cell surface as they become 
activated into the cell cycle and propose that the EGFR+ cell 
population, consisting mainly of transit amplifying cells, 
also includes a small proportion of activated, fast dividing 
stem cells able to return to the quiescent state. A depletion of 
EGFR− stem-like cells may be sensed at the EGFR+ popula-
tion level as a disruption of homeostasis triggering reversion 
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experimental model to study cancer stem cells [for discus-
sion, see Ref. 84].

In conclusion, one possible mechanism controlling di-
versity between long-term multipotent stem cells and their 
progenitors would be a selective avoidance of growth factor 
receptors on the cell surface since they do not respond to 
the same growth factors [85]. From our present work we 
argue that keratinocyte fate determination may be regu-
lated at the level of asymmetric mitosis by uneven distribu-
tion of surface EGFR between 2 daughter cells and provide 
evidence that this unequal EGFR segregation contributed 
to their molecular and functional divergence. Asymmetric 
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