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Human metacognition, or the capacity to introspect on one’s own mental states, has been mostly characterized through confidence
reports in visual tasks. A pressing question is to what extent results from visual studies generalize to other domains. Answering this
question allows determining whether metacognition operates through shared, supramodal mechanisms or through idiosyncratic,
modality-specific mechanisms. Here, we report three new lines of evidence for decisional and postdecisional mechanisms arguing for the
supramodality of metacognition. First, metacognitive efficiency correlated among auditory, tactile, visual, and audiovisual tasks. Second,
confidence in an audiovisual task was best modeled using supramodal formats based on integrated representations of auditory and visual
signals. Third, confidence in correct responses involved similar electrophysiological markers for visual and audiovisual tasks that are
associated with motor preparation preceding the perceptual judgment. We conclude that the supramodality of metacognition relies on
supramodal confidence estimates and decisional signals that are shared across sensory modalities.
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Introduction
Humans have the capacity to access and report the contents of
their own mental states, including percepts, emotions, and

memories. In neuroscience, the reflexive nature of cognition is
now the object of research under the broad scope of the term
“metacognition” (Koriat, 2007; Fleming et al., 2012). A widely
used method to study metacognition is to have observers do a
challenging task (first-order task), followed by a confidence judg-
ment regarding their own task performance (second-order task;
see Fig. 1, left). In this operationalization, metacognitive accuracy
can be quantified as the correspondence between subjective con-
fidence judgments and objective task performance. Although
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Significance Statement

Metacognitive monitoring is the capacity to access, report, and regulate one’s own mental states. In perception, this allows rating
our confidence in what we have seen, heard, or touched. Although metacognitive monitoring can operate on different cognitive
domains, we ignore whether it involves a single supramodal mechanism common to multiple cognitive domains or modality-
specific mechanisms idiosyncratic to each domain. Here, we bring evidence in favor of the supramodality hypothesis by showing
that participants with high metacognitive performance in one modality are likely to perform well in other modalities. Based on
computational modeling and electrophysiology, we propose that supramodality can be explained by the existence of supramodal
confidence estimates and by the influence of decisional cues on confidence estimates.
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some progress has been made regarding the statistical analysis of
confidence judgments (Galvin et al., 2003; Maniscalco and Lau,
2012; Barrett et al., 2013) and more evidence has been gathered
regarding the brain areas involved in metacognitive monitoring
(Grimaldi et al., 2015), the core properties and underlying mech-
anisms of metacognition remain largely unknown. One of the
central questions is whether, and to what extent, metacognitive
monitoring should be considered supramodal: is the computa-
tion of confidence fully independent of the perceptual signal (i.e.,
supramodality) or does it also involve signal-specific compo-
nents? According to the supramodality hypothesis, metacogni-
tion would have a quasihomuncular status, the monitoring of
all perceptual processes being operated through a single shared
mechanism. Instead, modality-specific metacognition would in-
volve a distributed network of monitoring processes that are spe-
cific for each sensory modality. The involvement of supramodal,
prefrontal brain regions during confidence judgments first sug-
gested that metacognition is partly governed by supramodal rules
(Fleming et al., 2010; Yokoyama et al., 2010; Rahnev et al., 2015).
At the behavioral level, this is supported by the fact that metacog-
nitive performance (Song et al., 2011), and confidence estimates
(de Gardelle and Mamassian, 2014; Rahnev et al., 2015) correlate
across subjects between two different visual tasks, as well as be-
tween a visual and an auditory task (de Gardelle et al., 2016).
However, the supramodality of metacognition is challenged by
the report of weak or null correlations between metacognitive
performance across different tasks involving vision, audition,
and memory (Ais et al., 2016). Beyond sensory modalities, meta-
cognitive judgments across cognitive domains were shown to
involve distinct brain regions, notably, frontal areas for percep-
tion and precuneus for memory (McCurdy et al., 2013). Support-
ing this view, patients with lesions to the anterior prefrontal
cortex were shown to have a selective deficit in metacognition for
visual perception, but not memory (Fleming et al., 2014). This
anatomo-functional distinction across cognitive domains is fur-
ther supported by the fact that meditation training improves
metacognition for memory, but not for vision (Baird et al., 2014).
Compared with previous work, the present study sheds new light
on the issue of supramodality by comparing metacognitive mon-
itoring of stimuli from distinct sensory modalities but during
closely matched first-order tasks. At the behavioral level, we first
investigated the commonalities and specificities of metacogni-
tion across sensory domains including touch, a sensory modality
that has been neglected so far. We examined correlations between
metacognitive performance during a visual, auditory, and tactile
discrimination task (Experiment 1). Next, extending our para-
digm to conditions of audiovisual stimulation, we quantified for
the first time the links between unimodal and multimodal meta-
cognition (Deroy et al., 2016) and assessed through computa-
tional modeling how multimodal confidence estimates are built
(Experiment 2). This allowed us to assess whether metacognition
is supramodal because of a generic format of confidence. Finally,
we investigated the neural mechanisms of unimodal and multi-
modal metacognition and repeated Experiment 2 while record-
ing 64-channel electroencephalography (EEG, Experiment 3).
This allowed us to identify neural markers with high temporal
resolution, focusing on those preceding the response in the first-
order task [eventrelated potentials (ERPs), alpha suppression] to
assess whether metacognition is supramodal because of the pres-
ence of decisional cues. The present data reveal correlations in
metacognitive behavioral efficiencies across different uni-
modal and bimodal perception; computational evidence for
integrative, supramodal representations during audiovisual con-

fidence estimates; and the presence of similar neural markers of
supramodal metacognition preceding the first-order task. Alto-
gether, these behavioral, computational, and neural findings
provide nonmutually exclusive mechanisms explaining the su-
pramodality of metacognition during human perception.

Materials and Methods
Participants. A total of 50 participants (Experiment 1: 15 including 8 fe-
males, mean age � 23.2 years, SD � 8.3 years; Experiment 2: 15 including
5 females, mean age � 21.3 years, SD � 2.6 years; Experiment 3: 20
including 6 females, mean age � 24.6 years, SD � 4.3 years) from the
student population at the Swiss Federal Institute of Technology (EPFL)
took part in this study in exchange for monetary compensation (20 CHF
per hour). All participants were right-handed, had normal hearing and
normal or corrected-to-normal vision, and no psychiatric or neurologi-
cal history. They were naive to the purpose of the study and gave in-
formed consent in accordance with institutional guidelines and the
Declaration of Helsinki. The data from two participants were not ana-
lyzed (one in Experiment 1 due to a technical issue with the tactile device
and one from Experiment 2 because the participant could not perform
the auditory task).

Stimuli. All stimuli were prepared and presented using the Psycho-
physics toolbox (Pelli, 1997; Brainard, 1997, Kleiner et al., 2007; RRID:
SCR_002881) in Matlab (Mathworks; RRID:SCR_001622). Auditory
stimuli consisted of either an 1100 Hz sinusoidal (high-pitched “beep”
sound) or a 200 Hz sawtooth function (low-pitched “buzz” sound)
played through headphones in stereo for 250 ms with a sampling rate of
44,100 Hz. The loudness of one of the two stimuli was manipulated to
control for task performance and the other stimulus remained constant.
In phase 1, the initial inter-ear intensity difference was 50% and in-
creased (decreased) by 1% after each incorrect (two correct) answers.
The initial difference and step size were adapted based on individual
performance. The initial difference in phase 2 was based on the results
from phase 1 and the step size remained constant. In the auditory con-
dition of Experiment 2, both sounds were played simultaneously in both
ears and were distinguished by their timbre. When necessary, a correc-
tion of hearing imbalance was performed before the experiment to avoid
response biases.

Tactile stimuli were delivered to the palmar side of each wrist by a
custom-made vibratory device using coin permanent-magnetic motors
(9000 rpm maximal rotation speed, 9.8 N bracket deflection strength, 55
Hz maximal vibration frequency, 22 m/s 2 acceleration, 30 ms delay after
current onset) controlled by a Leonardo Arduino board through pulse
width modulation. Task difficulty was determined by the difference in
current sent to each motor and one motor always received the same
current. In phase 1, the initial interwrist difference was 40% and in-
creased (decreased) by 2% after each incorrect (two correct) answers.
The initial difference and step size were adapted individually based on
performance. A correction of tactile imbalance due to a difference of
pressure between the vibrator and the wrist was performed before the
experiment to avoid response biases. The initial difference in phase 2 was
determined by the final difference from phase 1. The step size for the
stimulus staircase remained constant for both phases.

Visual stimuli consisted in pairs of two 5° � 5° Gabor patches (5
cycles/°, 11° center-to-center distance). When only one pair of visual
stimuli was presented (visual condition of Experiment 1, audiovisual
condition of Experiments 2 and 3), it was centered vertically on the
screen. When two pairs were presented (visual condition of Experiment
2 and 3), each pair was presented 5.5° above or below the vertical center
of the screen. Visual contrast of one Gabor of the pair was manipulated,
whereas the other always remained at constant contrast. The staircase
procedure started with a difference of contrast between Gabor patches of
40% and an increment (decrement) of 2.5% after one incorrect (two
correct) answers.

General procedure. All three experiments were divided into two main
phases. The first phase aimed at defining the participant’s threshold dur-
ing a perceptual task using a one-up/two-down staircase procedure (Lev-
itt, 1971). In Experiment 1, participants indicated which of two stimuli
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presented to the right or left ear (auditory condition), wrist (tactile con-
dition), or visual field (visual condition) was the most salient. Saliency
corresponded respectively to auditory loudness, tactile force, and visual
contrast (see below for details). In Experiment 2, participants indicated
whether the two most salient stimuli of two simultaneous pairs were
presented to the same or different ear (auditory condition), visual field
(visual condition), or if the side of the most salient auditory stimulus
corresponded to the side of the most salient visual one (audiovisual
condition). Stimuli were presented simultaneously for 250 ms. All stair-
cases included a total of 80 trials and lasted �5 min. All thresholds were
defined as the average stimulus intensity during the last 25 trials of the
staircase procedure. All staircases were visually inspected and restarted in
case no convergence occurred by the end of the 80 trials (i.e., succession
of multiple up/down reversals). The initial stimulation parameters in the
audiovisual condition of Experiments 2 and 3 were determined by a
unimodal staircase procedure applied successively to the auditory and
visual condition.

In the second phase, participants did the same perceptual task with an
initial stimulus intensity given by the final value in the staircase con-
ducted in phase 1. As in phase 1, stimuli in phase 2 were controlled with
one-up/two-down staircase procedure to keep task performance �71%
throughout, thus accounting for training or fatigue effects. This ensured
a constant level of task difficulty, which is crucial to quantify metacogni-
tive accuracy precisely across conditions and is a standard approach
(Fleming et al., 2010, McCurdy et al., 2013; Ais et al., 2016). Immediately
after providing their response on the perceptual task, participants re-
ported their confidence on their preceding response on a visual analog
scale using a mouse with their right hand. The left and right end of the
scale were labeled “very unsure” and “very sure,” respectively, and par-
ticipants were asked to report their confidence as precisely as possible
trying to use the whole scale range. A cursor slid over the analog scale
automatically after mouse movements and participants clicked the left
mouse button to indicate their confidence. Participants could click the
right button instead to indicate when they had made a trivial mistake
(e.g., pressed the wrong button, obvious lapses of attention), which al-
lowed us to exclude these trials from the analysis. During a training phase
of 10 trials, the cursor changed color after participants clicked to provide
their answer to the perceptual task. The cursor turned green after correct
responses and red after incorrect responses. No feedback was provided
after the training phase. In the audiovisual condition of Experiments 2
and 3, auditory and visual stimuli intensities were yoked so that a correct
(incorrect) answer on the bimodal stimulus led to an increase (decrease)
in the stimulus intensity in both modalities. Each condition included a
total of 400 trials divided into five blocks. Trials were interspaced with a
random interval lasting between 0.5 and 1.5 s drawn from a uniform
distribution. The three conditions (two in Experiment 3) were run suc-
cessively in a counterbalanced order. One entire experimental session
lasted �3 h.

Behavioral analysis. The first 50 trials of each condition were excluded
from analysis because they contained large variations of perceptual sig-
nal. Only trials with reaction times �3 s for the type 1 task and type 2 task
were kept (corresponding to an exclusion of 22.2% of trials in Experi-
ment 1 and 12.6% in Experiment 2). In Experiment 3, we used a more
lenient superior cutoff of 5 s, resulting in 3.7% excluded trials because
many trials had to be removed due to artifacts in the EEG signal. Meta-d�
(Maniscalco and Lau, 2012) was computed with MATLAB (The Math-
Works; RRID:SCR_001622), with confidence binned into six quantiles
per participant and per condition. All other behavioral analyses were
performed with R (2016; RRID:SCR_001905), using type 3 ANOVAs
with Greenhouse–Geisser correction (afex package: Singmann et al.,
2017) and null effect estimates using Bayes factors with a Cauchy prior of
medium width (scale � 0.71; BayesFactor package: Morey et al., 2015).
Correlations in metacognitive efficiencies across senses were quantified
by R 2 adjusted for the number of-dependent variables relative to the
number of data points. The overlap between confidence and reaction
times probability density functions after correct and incorrect responses
was estimated as the area defined by the x-axis and the lower of the two
densities at each point in x (Overlap package: Ridout and Linkie, 2009).

The package ggplot2 (Wickham, 2009; RRID:SCR_014601) was used for
graphical representations.

Preprocessing of EEG data. Continuous EEG was acquired at 1024 Hz
with a 64-channels Biosemi ActiveTwo system referenced to the com-
mon mode sense-driven right leg ground (CMS-DRL). Signal prepro-
cessing was performed using custom MATLAB (The MathWorks; RRID:
SCR_001622) scripts using functions from the EEGLAB (version 13.5.4;
Delorme and Makeig, 2004; RRID:SCR_007292), Adjust (Mognon et al.,
2011; RRID:SCR_009526) and Sasica toolboxes (Chaumon et al., 2015).
The signal was first downsampled to 512 Hz and band-pass filtered be-
tween 1 and 45 Hz (Hamming windowed-sinc finite impulse response
filter). After visual inspection, artifact-contaminated electrodes were re-
moved for each participant, corresponding to 3.4% of total data. Epoch-
ing was performed at type 1 response onset. For each epoch, the signal
from each electrode was centered to zero and average referenced. After
visual inspection and rejection of epochs containing artifactual signal
(3.9% of total data, SD � 2.2%), independent component analysis
(Makeig et al., 1996) was applied to individual datasets, followed by a
semiautomatic detection of artifactual components based on measures of
autocorrelation, correlation with vertical and horizontal EOG electrodes,
focal channel topography, and generic discontinuity (Chaumon et al.,
2015). Automatic detection was validated by visually inspecting the first
15 component scalp map and power spectra. After artifact rejection,
epochs with amplitude changes of �100 �V DC offset were excluded
(2.9% of epochs, SD � 3.1%), and the artifact-contaminated electrodes
were interpolated using spherical splines (Perrin et al., 1989).

Statistical analyses of EEG data. After preprocessing, analyses were
performed using custom MATLAB scripts using functions from the
EEGLAB (Delorme and Makeig, 2004; RRID:SCR_007292) and Fieldtrip
toolboxes (Oostenveld et al., 2011; RRID:SCR_004849). Event-related
potentials were centered on zero. Time–frequency analysis was per-
formed using Morlet wavelets (3 cycles) focusing on the 8 –12 Hz band.
Voltage amplitude and alpha power were averaged within 50 ms time
windows and analyzed with linear mixed-effects models (lme4 and
lmerTest packages; Bates et al., 2014; Kuznetsova et al., 2014). This
method allowed analyzing single trial data with no averaging across
condition or participants and no discretization of confidence ratings
(Bagiella, Sloan, and Heitjan, 2000). Models were performed on each
latency and electrode for individual trials, including raw confidence rat-
ing and condition (i.e., visual vs audiovisual) as fixed effects and random
intercepts for subjects. Random slopes could not be included in the mod-
els because they induced convergence failures (i.e., we used parsimoni-
ous instead of maximal models; Bates et al., 2015). Significance of fixed
effects was estimated using Satterthwaite’s approximation for degrees of
freedom of F statistics. Statistical significance for ERPs and alpha power
within the ROI was assessed after correction for false discovery rate.
Topographic analyses were exploratory and significance was considered
for p � 0.001 without correcting for multiple comparisons.

Signal-detection theory (SDT) models of behavior. The models assume
that, on each trial, two internal signals are generated, {X1, X2}, and then
combined into a bivariate normal. Because X1 and X2 are independent,
the covariance matrix is diagonal. The marginal distributions of the bi-
variate normal corresponded to one of the stimuli pairs in each condi-
tion. Each pair can be described as R (or L) if the strongest stimulus in the
pair is the right (or left) one. The bivariate distribution was parametri-
cally defined with an arbitrary mean with � � � � (1, 1) (� � 1 in cases of
R stimuli and � � �1 in cases of L stimuli) and two SDs �1, �2. There-
fore, the four probability densities can be expressed as a function of the
internal signal strength X and its distribution parameters � and � as
follows:

P	X1 � L
 �
1

2��1
e��	X1��1
2

2�1
2 � ; P	X1 � R
 �

1

2��1
e��	X1��1
2

2�1
2 �

P	X2 � L
 �
1

2��2
e��	X2��2
2

2�2
2 � ; P	X2 � R
 �

1

2��2
e��	X2��2
2

2�2
2 �

For each set of four stimuli presented in every trial of Experiment 2,
congruent pairs correspond to either LL or RR stimuli, whereas incon-
gruent correspond to LR or RL stimuli.
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Decision rule: type 1 task. In the model, the type 1 congruency decision
depends on the log-likelihood ratio as follows:

d � log� P	congruent


P	incongruent
� � log�P	LL or RR


P	LR or RL
�
� log�P	LL � X1, X2
 � P	RR � X1, X2


P	LR � X1, X2
 � P	RL � X1, X2

�

Applying Bayes’ rule and given that X1, X2 are independent, then:

d � log�
P	X1 � L
 � P	X2 � L
 � P2	L


� P	X1 � R
 � P	X2 � R
 � P2	R


P	X1 � L
 � P	X2 � R
 � P	L
 � P	R

� P	X1 � R
 � P	X2 � L
 � P	R
 � P	L


�
and assuming equal priors P(R) � P(L), then:

d � log�P	X1 � L
 � P	X2 � L
 � P	X1 � R
 � P	X2 � R


P	X1 � L
 � P	X2 � R
 � P	X1 � R
 � P	X2 � L
�
If d � 0, then the response given is “congruent,” whereas if d � 0, the
response is “incongruent.” The values of (X1, X2), corresponding to d �
0, where the congruent and incongruent stimuli are equally likely, should
satisfy the following relation:

P	X1 � L
 � P	X2 � L
 � P	X1 � R
 � P	X2 � R


� P	X1 � L
 � P	X2 � L
 � P	X1 � R
 � P	X2 � R


The solution to this relation should then satisfy the following:

P	X1 � L
 � P	X2 � L
 � P	X2 � R
� � P	X1 � R
 � P	X2 � L


� P	X2 � R
�

and, trivially for an ideal observer, possible solutions for the type 1 deci-
sion are given by the following:

�X1 � 0, X2 � �� and �X2 � 0, X1 � ��

Therefore, the internal response space (X1, X2) is divided in four quad-
rants such that an ideal observer will respond “congruent” if X1 and X2

are both greater than zero or both lower than zero. If X1 and X2 have
different signs, the response will be incongruent.

Confidence judgment: type 2 task. All models assume that confidence in
each trial is proportional to the likelihood of having given a correct
answer as follows:

conf � P	correct � decision, X1, X2


If a response is “congruent,” then a participant’s confidence in that re-
sponse is as follows:

Conf 	X1, X2
 � P	RR � X1,, X2
 � P	LL � X1,, X2


The values of confidence in this case correspond to the top-right and
bottom-left quadrants in the 2D SDT model. The two remaining quad-
rants correspond to trials in which the response was “incongruent” and
are symmetrical to the former relative to the decision axes.

Again, applying Bayes’ rule and assuming that confidence in the uni-
modal condition is calculated on the basis of the joint distribution and
hence P(X1, X2 � RR) � P(X1 � R) � P(X2 � R), it follows that:

Conf 	X1, X2
 �

P	X1 � R
 � P	X2 � R
 � P2	R

� P	X1 � L
 � P	X2 � L
 � P2	L


P	X1, X2


Assuming equal priors P( L) � P( R) and given that P(X1) � P(X1 � R) �
P(X1 � L) and P(X2) � P(X2 � R) � P(X2 � L), then the expression above
can be rewritten as follows:

conf �
1

1 �
P	X1 � R


P	X1 � L

�

P	X2 � R


P	X2 � L

�

P	X1 � R
 � P	X2 � R


P	X1 � L
 � P	X2 � L


�
1

1 �
P	X1 � L


P	X1 � R

�

P	X2 � L


P	X2 � L

�

P	X1 � L
 � P	X2 � L


P	X1 � R
 � P	X2 � R


;

Assuming bivariate normal distributions of the internal signals (as de-
tailed above) and after simplification, it can be shown that:

conf �
1

1 � ed1 � ed2 � ed1�d2
�

1

1 � e�d1 � e�d2 � e�d1�d2
;

d1 � � 2 � X1 � �1

�1
2 � ; d2 � � 2 � X2 � �2

�2
2 �

Modeling strategy. The modeling included two phases. In the first
phase, we obtained the parameter values that best explained the uni-
modal data. In the second phase, behavioral data in the bimodal
condition were predicted by combining the parameter values obtained
in phase 1 according to different models. The predictions of these models
were compared using Bayes Information Criterion (BIC) and relative
BIC weights (see below).

Phase 1: fits to the unimodal conditions. The behavioral data for each
participant were summarized in eight different categories: those trials in
which confidence was higher/lower than the median confidence value for
each participant, for correct/incorrect type 1 response, for congruent/
incongruent stimuli (i.e., 2 confidence bins � 2 accuracies � 2 condi-
tions). We summarize these data in the vector containing the number of
trials for each category nobs. In the context of SDT, two parameters are
enough to determine fully the expected probability densities pexp of these
eight response types: the internal noise (�) and confidence criterion (c).
We defined the best-fitting model parameters as those that maximized
the likelihood of the observed data. More specifically, we randomly sam-
pled the parameter space using a simulated annealing procedure (using
the custom function anneal, which implements the method presented by
Kirkpatrick et al., 1983) and used maximum likelihood to obtain two
parameter values. The best fit (the point of maximum likelihood) was
defined as the set of values for pexp that minimized the negative log-
likelihood nL of the data as follows:

nL � �log	P	nobs � N, pexp



Where P is the multinomial distribution with parameters nobs � (n 1, . . .,
n 8), N � � (n 1, . . ., n 8), and Pexp � (P 1, . . ., P 8), with the superindices
corresponding to each of the 8 possible categories as follows:

P	nobs � N, Pexp


� � N!

nobs
1 ! � . . . � nobs

8 !
� pexp

1 � . . . � pexp
8 , when 	

i�1

8

nobs
i � n

0 otherwise

In the unimodal conditions, �1 and �2 correspond to each of the stimuli
pairs of the same modality and were therefore constrained to be equal.
The parameter c determined the type-2 criterion above which a decision
was associated with high confidence ratings.

The model relied on three assumptions: first, it assumed equal priors
for all possible stimuli. Second, type 1 decisions were assumed to be
unbiased and optimal. Third, as noted above, confidence was defined as
proportional to the likelihood of having given a correct answer given the
type 1 decision and the internal signal for each stimuli pair. We argue that
the second assumption of equality for �1 and �2 is a reasonable one in the
unimodal visual case in which the two stimuli pairs differed only on their
vertical position (but did not differ in their distance from the vertical
midline). This assumption, however, is less clearly valid in the unimodal
auditory condition, in which the two pairs of stimuli were different (a
sinewave “beep” vs a sawtooth “buzz”). To estimate the model fits in the
unimodal condition, R 2 values for the correlation between observed and
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modeled response rates pooled for all participants were obtained. The
model was flexible enough to fit the different behavioral patterns of most
participants and the model fits obtained for the unimodal auditory con-
dition were comparable to those in the unimodal visual condition (see
Results).

Phase 2: predictions of the bimodal condition. Once the � and c param-
eters were estimated from the unimodal data for each participant, they
were then combined under different models to estimate the predictions
of the data in the audiovisual condition. Note that, with this procedure
and unlike the fits to the unimodal conditions, the data used to estimate
the model parameters were different from those on which the model fits
were compared. In the bimodal condition and in contrast to the uni-
modal ones, �1 and �2 corresponded to the internal noise for the visual
and auditory signal, respectively, and were allowed to vary indepen-
dently. Here, X1, X2 are the internal responses generated by each pair of
stimuli of the visual and auditory modality respectively. Because confi-
dence was binned into “high” and “low” based on individual median
splits, the criterion value was a critical factor determining model fits.
Models were grouped into three families to compare them systematically.
The family of integrative models echoes the single-modality model and
represents the highest degree of integration: here, confidence is com-
puted on the basis of the joint distribution of the auditory and visual
modalities (see Fig. 4). Within this family, the average model considers
one value of � for each modality and takes a criterion resulting from the
mean of the two modalities estimated. The derivation and expression of
confidence in the integrative models is equal to that of the unimodal
model, described in detail above.

The family of comparative models (see Fig. 4) assumes that confidence
can only be computed separately for each modality and combined into a
single summary measure in a second step. Within this family, the
minimum-confidence model takes the minimum of the two independent
confidence estimates as a summary statistic. After a very similar deriva-
tion as for the integrative models, here confidence can be expressed as
follows:

conf � P	correct � X1, X2
 � min	P	R � X1
, P	R � X2



� min� 1

1 � e�d1
,

1

1 � e�d2�
Finally, the family of single-modality models (see Fig. 4) assumes that
confidence varies with the internal signal strength of a single modality
and therefore supposes no integration of information at the second-

order level. Within this family, the maximum efficiency model computes
confidence on the basis of the modality with the best metacognitive effi-
ciency alone as follows:

conf � P	correct � X1
 � P	R � X1
 �
1

1 � e�d1

where modality 1 had the best metacognitive efficiency for this
participant.

Model fits. Single-modality models were assessed by calculating the
percentage of variance explained for the data from the unimodal condi-
tions. First, the nlme package in R (Pinheiro and Bates, 2010) was used to
estimate the predictive power of the models while allowing for random
intercepts for each participant. Then, goodness-of-fit was estimated with
R 2 using the piecewiseSEM package (Lefcheck, 2016). BIC values were
then calculated to compare the different models while accounting for
differences in their number of parameters. BIC weights for the model fits
to the bimodal condition were estimated following Burnham and Ander-
son (2002) and as in Solovey et al. (2015). By definition, the BIC weight
for model i can be expressed as follows:

BICw	model i
 �
e�

1

2
	BICi�BICmin


	n�1

3
e�

1

2
	BICn�BICmin


where BICk is the BIC for model k and BICmin is the lowest BIC corre-
sponding to the best model out of those considered.

Results
Experiment 1
We first compared metacognitive performance across the visual,
auditory, and tactile modalities. Participants were presented with
a pair of simultaneous stimuli at a right and left location and
asked to indicate which of the two stimuli had the highest inten-
sity (Fig. 1, right). In this way, the first-order task consisted in a
two-alternative forced choice on visual, auditory, or tactile inten-
sity (i.e., respectively contrast, loudness, or force). After each
choice, participants reported their confidence on their previous
response (second-order task; Fig. 1, left). The main goal of this
experiment was to test the hypothesis that metacognitive effi-
ciency would correlate positively between sensory modalities,

Figure 1. Experimental procedure. Participants had to perform a perceptual task on a stimulus (first-order task) and then indicate their confidence in their response by placing a cursor on a visual
analog scale (second-order task). The types of stimuli and first-order task varied across conditions and experiments, as represented schematically on the right. In Experiment 1, a pair of two images,
sounds, or tactile vibrations was presented on each trial. The stimuli of each pair were lateralized and differed in intensity (here, high intensity is depicted in red, low intensity in pink). The first-order
task was to indicate whether the most intense stimulus was located on the right (as depicted here) or left side. In Experiment 2, either two pairs of two images (unimodal visual condition), two sounds
(unimodal auditory condition), or one pair of two images with one pair of two sounds (bimodal audiovisual condition) were presented on each trial. The first-order task was to indicate whether the
most intense stimulus of each pair were both on the same side (congruent trial) or each on a different side (incongruent trial, as depicted here). Experiment 3 was a replication of Experiment 2
including EEG recordings, focusing on the unimodal visual condition and the bimodal audiovisual condition. The order of conditions within each experiment was counterbalanced across participants.
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suggesting a common underlying mechanism. We first report gen-
eral results of type 1 and type-2 performances and then turn to the
central question of correlations between sensory modalities.

We aimed to equate first-order performance in the three mo-
dalities using a one-up/two-down staircase procedure (Levitt,
1971). Although this approach prevented large interindividual
variations, some small but significant differences in d� (i.e., first-
order sensitivity) across modalities subsisted, as revealed by a
one-way ANOVA (F(1.92,26.90) � 8.76, p � 0.001, �p

2 � 0.38; Fig.
2a). First-order sensitivity was lower in the auditory condition
[mean d� � 1.20 � 0.05, 95% confidence interval (CI)] compared
with the tactile (mean d� � 1.37 � 0.07, p � 0.002) and visual
(mean d� � 1.33 � 0.07, p � 0.004) (Fig. 2a) conditions. No
effect of condition on response criterion was found (F(1.96,27.47) �
0.30, p � 0.74, �p

2 � 0.02). The difference in first-order sensitivity
is likely due to the difficulty of setting perceptual thresholds with
adaptive staircase procedures. Importantly, however, it did not
prevent us from comparing metacognitive performance across
senses because the metrics of metacognitive performance that we
used are independent of first-order sensitivity. As reported pre-
viously (Ais et al., 2016), average confidence ratings correlated
between the auditory and visual conditions (adjusted R 2 � 0.26,
p � 0.03), between the tactile and visual conditions (adjusted
R 2 � 0.55, p � 0.001), and between the auditory and tactile
conditions (adjusted R 2 � 0.51, p � 0.002). Metacognitive sen-
sitivity was estimated with meta-d�, a response-bias free measure

of how well confidence estimates track performance on the first-
order task (Maniscalco and Lau, 2012). A one-way ANOVA on
meta-d� revealed a main effect of condition (F(1.93,25.60) � 5.92,
p � 0.009, �p

2 � 0.30; Fig. 2b). To further explore this main effect
and to rule out the possibility that it stemmed from differences at
the first-order level, we normalized metacognitive sensitivity by
first-order sensitivity (i.e., meta-d�/d�) to obtain a pure index of
metacognitive performance called metacognitive efficiency. Only
a trend for a main effect of condition was found (F(1.76,24.61) �
3.16, p � 0.07, �p

2 � 0.18; Fig. 2c), revealing higher metacognitive
efficiency in the visual (mean ratio � 0.78 � 0.13) versus audi-
tory domain (mean meta-d�/d� ratio � 0.61 � 0.15; paired t test:
p � 0.049). The difference in metacognitive efficiency between
the visual and the tactile conditions (mean ratio � 0.70 � 0.10)
did not reach significance (paired t test: p � 0.16, Bayes factor �
0.65).

We then turned to our main experimental question. We found
positive correlations between metacognitive efficiency in the vi-
sual and tactile conditions (adjusted R 2 � 0.21, p � 0.047; Fig. 2e)
and in the auditory and tactile conditions (adjusted R 2 � 0.24,
p � 0.038; Fig. 2f). The data were inconclusive regarding the
correlation between the visual and auditory condition (adjusted
R 2 � 0.07, p � 0.17, Bayes factor � 0.86; Fig. 2d). These results
reveal shared variance among auditory, tactile, and visual
metacognition, consistent with the supramodality hypothesis.
Moreover, the absence of any correlation between first-order

Figure 2. Top, Violin plots representing first-order sensitivity (a: d�), metacognitive sensitivity (b: meta-d�), and metacognitive efficiency (c: meta-d�/d�) in the auditory (A, in red), tactile (T, in
green), and visual modalities (V, in blue). Full dots represent individual data points. Empty circles represent average estimates. Error bars indicate SD. The results show that, independently of
first-order performance, metacognitive efficiency is higher in vision compared with audition. Bottom, Correlations between individual metacognitive efficiencies in the visual and auditory conditions
(d), visual and tactile conditions (e), and tactile and auditory conditions (f ). The results show that metacognitive efficiency correlates across sensory modalities, providing evidence in favor of the
supramodality hypothesis. **p � 0.01, ***p � 0.001, ●p � 0.1.
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sensitivity and metacognitive efficiency in any of the conditions
(all adjusted R 2 � 0; all p-values �0.19) rules out the possibility
that such supramodality during the second-order task was con-
founded with first-order performance. Finally, no effect of con-
dition on type 1 reaction times (F(1.78,24.96) � 0.28, p � 0.73, �p

2 �
0.02) or type 2 reaction times (F(1.77,24.84) � 1.77, p � 0.39,
�p

2 � 0.06) was found.

Experiment 2
Experiment 1 revealed correlational evidence for the supramo-
dality of perceptual metacognition across three modalities. A pre-
vious study (McCurdy et al., 2013), however, dissociated brain
activity related to metacognitive accuracy in vision versus mem-
ory despite clear correlations at the behavioral level. Therefore,
correlations between modalities are compelling, but not suffi-
cient to support the supramodality hypothesis. We therefore put
the evidence of Experiment 1 to a stricter test in Experiment 2 by
comparing metacognitive efficiency for unimodal versus bi-
modal, audiovisual stimuli. We reasoned that, if metacognitive
monitoring operates independently from the nature of sensory
signals from which confidence is inferred, then confidence esti-
mates should be as accurate when made on unimodal or bimodal
signals. In contrast, if metacognition operated separately in each
sensory modality, then one would expect that metacognitive ef-
ficiency for bimodal stimuli would only be as high as the minimal
metacognitive efficiency for unimodal stimuli. Beyond these

comparisons, the supramodality hypothesis also implies the
existence of correlations between unimodal and bimodal meta-
cognitive efficiencies. Participants performed three different per-
ceptual tasks, all consisting of a congruency judgment between
two pairs of stimuli (Fig. 1, right). In the unimodal visual condi-
tion, participants indicated whether the Gabor patches with the
strongest contrast within each pair were situated on the same or
different side of the screen. In the unimodal auditory condition,
they indicated whether the loudest sounds of each pair were
played in the same ear or in two different ears. In the bimodal
audiovisual condition, participants indicated whether the side
corresponding to the most contrasted Gabor patch of the visual
pair corresponded with the side of the loudest sound of the audi-
tory pair. Importantly, congruency judgments required that par-
ticipants responded on the basis of the two presented modalities.
The staircase procedure minimized variations in first-order sen-
sitivity, such that sensitivity in the auditory (mean d� � 1.31 �
0.12), audiovisual (mean d� � 1.38 � 0.12), and visual conditions
(mean d� � 1.25 � 0.11) were similar (Fig. 3a, F(1.75,22.80) � 2.12,
p � 0.15, �p

2 � 0.14). No evidence of multisensory integration
was found at the first-order level because the perceptual thresh-
olds determined by the staircase procedure were not lower in the
bimodal versus unimodal condition (p � 0.17). This is likely due
to the task at hand involving a congruency judgment. As in Ex-
periment 1, no effect of condition on response criterion was
found (F(1.87,24.27) � 2.12, p � 0.14, �p

2 � 0.14). No effect of

Figure 3. Top, Violin plots representing first-order sensitivity (a: d�), metacognitive sensitivity (b: meta-d�), and metacognitive efficiency (c: meta-d�/d�) in the auditory (A, in red), audiovisual
(AV, in green), and visual (V, in blue) modalities. Full dots represent individual data points. Empty circles represent average estimates. Error bars indicate SD. The results show that, independently
of first-order performance, metacognitive efficiency is better for visual stimuli versus auditory or audiovisual stimuli, but not poorer for audiovisual versus auditory stimuli. Bottom, Correlations
between individual metacognitive efficiencies in the visual and auditory conditions (d), audiovisual and auditory conditions (e), and audiovisual and visual conditions (f ). The results show that
metacognitive efficiency correlates between unimodal and bimodal perceptual tasks in favor of the supramodality hypothesis. *p � 0.05, **p � 0.01.
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condition on average confidence was found (F(1.76,24.64) � 0.91,
p � 0.40, �p

2 � 0.06) and average confidence ratings correlated
between the auditory and audiovisual conditions (adjusted R 2 �
0.56, p � 0.001) and between the visual and audiovisual condi-
tions (adjusted R 2 � 0.38, p � 0.01) and a trend was found
between the auditory and visual conditions (adjusted R 2 � 0.12,
p � 0.11). A significant main effect of condition on type 1 reac-
tion times (F(1.66,21.53) � 18.05, p � 0.001, �p

2 � 0.58) revealed
faster responses in the visual (1.30 � 0.10 s) compared with the
auditory (1.47 � 0.13 s) and audiovisual task (1.68 � 0.11 s). No
difference was found for type 2 reaction times (F(1.82,23.62) � 1.69,
p � 0.21, �p

2 � 0.11). A main effect of condition for both meta-
cognitive sensitivity (meta-d�: F(1.98,25.79) � 4.67, p � 0.02, �p

2 �
0.26) and metacognitive efficiency (ratio meta-d�/d�: F(1.95,25.40) �
6.63, p � 0.005, �p

2 � 0.34; Fig. 3b,c, respectively) was found.
Pairwise comparisons revealed higher metacognitive efficiency in
the visual (mean ratio � 0.94 � 0.19) versus auditory (mean
meta-d�/d� ratio � 0.65 � 0.17; paired t test: p � 0.005) and
audiovisual domains (mean meta-d�/d� ratio � 0.70 � 0.15;
paired t test: p � 0.02). Because auditory and audiovisual meta-
cognitive efficiencies were not different (p � 0.5, Bayes factor �
0.38), the differences in metacognitive efficiency are likely to stem
from differences between auditory and visual metacognition, as
found in Experiment 1. Therefore, the fact that metacognitive
efficiency is similar in the audiovisual and auditory tasks implies
that the resolution of confidence estimates in the bimodal condi-
tion is as good as that in the more difficult unimodal condition
(in this case, auditory) despite its requiring the analysis of two
sources of information.

Crucially, we found correlations between metacognitive effi-
ciency in the auditory and visual conditions (adjusted R 2 � 0.24,
p � 0.043; Fig. 3d); more importantly, we also found correlations
between metacognitive efficiency in the auditory and audiovisual
conditions (adjusted R 2 � 0.23, p � 0.046; Fig. 3e) and a trend
between metacognitive efficiency in the visual and audiovisual
conditions (adjusted R 2 � 0.15, p � 0.097; Fig. 3f). This con-
trasted with no correlations between first-order sensitivity and
metacognitive efficiency in any of the conditions (all R 2 � 0.06;
all p � 0.19) except in the visual condition, in which high d� was
predictive of low meta-d�/d� values (R 2 � 0.39, p � 0.01). The
absence of such correlations in most conditions makes it unlikely
that relations in metacognitive efficiency were driven by sim-
ilarities in terms of first-order performance. In addition to the
equivalence between the resolution of unimodal and bimodal
confidence estimates, the correlations in metacognitive efficiency
between unimodal and bimodal conditions suggest that meta-
cognitive monitoring for unimodal versus bimodal signals in-
volves shared mechanisms (i.e., supramodality).

Computational models of confidence estimates for
bimodal signals
Using the data from Experiment 2, we next sought to reveal po-
tential mechanisms underlying the computation of confidence in
the bimodal condition. For this, we first modeled the proportion
of trials corresponding to high versus low confidence in correct
versus incorrect type 1 responses in the unimodal auditory and
unimodal visual conditions separately. Each condition was rep-
resented by a 2D SDT model with standard assumptions and only
2 free parameters per participant, internal noise � and confidence
criterion c (Fig. 4 and Materials and Methods). This simple model
accounted for more than half the total variance in participants’
proportion of responses, both in the unimodal visual (R 2 � 0.68)
and unimodal auditory conditions (R 2 � 0.57). We then com-

bined the fitted parameter values under different rules to estimate
and compare their fits with the audiovisual data. All models as-
sume that the visual and auditory stimuli did not interact, which
is supported by the fact that perceptual thresholds determined by
the staircase procedure were not lower in the bimodal vs uni-
modal conditions. Note that with this procedure, and unlike the
fits to the unimodal conditions, the data used to estimate the
model parameters were different from those on which the model
fits were compared. We evaluated different models systematically
by grouping them into three families varying in degree of supra-
modality. We present here the best model from each family (Fig.
4) and all computed models in SI. The integrative model echoes
the unimodal models and represents the highest degree of inte-
gration: here, confidence is computed on the basis of the joint
distribution of the auditory and visual modalities. The compara-
tive model assumes that confidence is computed separately for
each modality and in a second step combined into a single sum-
mary measure (in particular, the minimum of the two estimates,
see Materials and Methods for other measures). The single-
modality model assumes that confidence varies with the internal
signal strength of a single modality and therefore supposes no
integration of information at the second-order level. We com-
pared these different models by calculating their respective BIC
weights (BICw: Burnham and Anderson, 2002; Solovey et al.,
2015), which quantify the relative evidence in favor of a model in
relation to all other models considered.

By examining individual BICw in a ternary plot (Fig. 4), we
found that the best model for most participants was either the
integrative or the comparative model, whereas the BICw for
the single-domain model was equal to 0. However, the single-
modality model is also plausible because it does predict the re-
sponses of four participants better than any of the other two
models. The reason that our models could not distinguish clearly
between the integrative model and the comparative model may
be due to the fact that differences in intensity between the left and
right stimuli of the auditory and visual pairs were yoked: the staircase
procedure that we used controlled both pairs simultaneously, in-
creasing (decreasing) the difference between the left and right stim-
uli in both modalities after an incorrect (two correct) response. As a
result, we sampled values from a single diagonal in the space of
stimulus intensities, which limits the modeling results. In future
studies, nonyoked stimuli pairs could be used—albeit at the cost of a
longer experimental session—to explore wider sections of the land-
scape of confidence as a function of internal signal to better test the
likelihood of the models studied here.

Together, these computational results suggest that most par-
ticipants computed confidence in the bimodal task by using in-
formation from the two modalities under a supramodal format
that is independent of the sensory modality, in agreement with
the first mechanism for supramodal metacognition we intro-
duced. We conclude that the confidence reports for audiovisual
signals arise either from the joint distribution of the auditory and
visual signals (integrative model) or are computed separately for
distinct modalities and then combined into a single supramodal
summary statistic (comparative model). These two models indi-
cate that metacognition may be supramodal because monitoring
operates on supramodal confidence estimates computed with an
identical format or neural code across different tasks or sensory
modalities. We later refer to this as the first mechanism for su-
pramodal metacognition. In addition, metacognition may be su-
pramodal in case nonperceptual cues drive the computation of
confidence estimates (mechanism 2). Among them, likely candi-
dates are decisional cues such as reaction times during the first-
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order task because they are present no matter the sensory
modality at play and are thought to play an important role for
confidence estimates (Yeung and Summerfield, 2012). We next
sought to determine whether metacognition was supramodal due
to the influence of decisional cues that are shared between sen-
sory modalities (mechanism 2).

Our modeling results suggest that confidence estimates are
encoded in a supramodal format compatible with the supramo-
dality hypothesis for metacognition. Notably, however, apparent
supramodality in metacognition could arise in case nonpercep-
tual signals are taken as inputs for the computation of confidence.

In models implying a decisional locus for metacognition (Yeung
and Summerfield, 2012), stimulus-independent cues such as re-
action times during the first-order task take part in the compu-
tation of confidence estimates. This is supported empirically by a
recent study showing that confidence in correct responses is de-
creased in case response-specific representations encoded in the
premotor cortex are disrupted by transcranial magnetic stimula-
tion (Fleming et al., 2015). In the present study, decisional
parameters were shared across sensory modalities because partic-
ipants used a keyboard with their left hand to perform the first-
order task for all tasks. To extend our modeling results and to

Figure 4. Top row, Parameter estimation in the unimodal visual and unimodal auditory conditions. In the middle panel, circles represent the partially overlapping bivariate internal signal
distributions for each of the stimulus combinations, represented at a fixed density contour. The top right quadrant corresponds to congruent stimuli, in which the stimuli in each pair were stronger
on the right side. The colors represent the predicted confidence, normalized to the interval (0,1) for every combination of internal signal strength for each stimulus pair (X1, X2). Parameters for
internal noise (�) and criterion (c) were defined for each participant based on the fitting of response rates (“congruent”/“incongruent” and “sure”/“unsure” based on a median split of confidence
ratings) in the unimodal visual (left) and auditory (right) conditions. The thick black and gray lines correspond, respectively, to observed responses in congruent and incongruent trials for a
representative participant. The red lines represent the response rates predicted by the model with fitted parameters. Middle row: Model predictions. Modeling of bimodal data based on the
combination of cA, cV, and �A, �V, according to integrative (A, in blue), comparative (B, in red), and single-modality (C, in green) rules. Note that for models A and B, confidence increases with
increasing internal signal level in both modalities, whereas in the single-modality model C, confidence depends on the signal strength of only one modality. Bottom row, Model comparison for the
audiovisual condition. Left, Fit of response rates in the audiovisual condition for a representative participant according to model A (blue), B (red), or C (green). Right, Individual BIC weights for the
three model fits. The arrows show how to read the plot from an arbitrary data point in the diagram, indicated with a red triangle. Consider that the sum of the BICw for all models A–C amounts to
1 for each participant. To estimate the relative BICw of each model for any given participant, use the lines parallel to the vertex labeled 1 for that model. The intersection between the line parallel
to the vertex and the triangle edge corresponding to the model indicates the BICw.
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assess whether supramodality in metacognition also involves a
decisional locus (mechanism 2 discussed above), we examined
how participants used their reaction times to infer confidence in
different conditions. Specifically, we quantified the overlap of
first-order reaction times distributions corresponding to correct
versus incorrect responses as a summary statistic representing
how reaction times differ between correct and incorrect trials. We
measured how reaction time overlap correlated with the overlap
of confidence ratings after correct versus incorrect first-order
responses, which is a summary statistic analogous to ROC-based
methods typically used to quantify metacognitive sensitivity with
discrete confidence scales (Fleming and Lau, 2014). If confidence
involves a decisional locus, then one would expect a correlation
between confidence overlap and reaction time overlap so that
participants with the smallest confidence overlap (i.e., highest
metacognitive sensitivity) are the ones with the smallest reaction
times overlap (i.e., distinct reaction times in correct vs incorrect
responses). Interestingly in Experiment 1, the correlation
strength mirrored the difference in metacognitive efficiency that
we found between sensory modalities: higher correlations were
found in the visual domain (adjusted R 2 � 0.54, p � 0.002;
average metacognitive efficiency � 0.78 � 0.13) compared with
the tactile (adjusted R 2 � 0.26, p � 0.03; average metacognitive
efficiency � 0.70 � 0.10) and auditory (adjusted R 2 � �0.06,
p � 0.70; average metacognitive efficiency � 0.61 � 0.15) do-
mains. This suggests that decisional parameters such as reaction
times in correct versus incorrect trials may inform metacognitive
monitoring and may be used differently depending on the sen-
sory modality with a bigger role in visual than in tactile and
auditory tasks. These results are consistent with second-order
models of confidence estimation (Fleming and Daw, 2017) and
support empirical results showing better metacognitive perfor-
mance when confidence is reported after versus before the first-
order task (Siedlecka et al., 2016) or better metacognitive
performance for informative versus noninformative action dur-
ing the first-order task (Kvam et al., 2015). Importantly, although
such correlations between reaction time overlap and confidence
overlap would be expected in experiments containing a mixture
of very easy and very difficult trials, the correlations in the visual
and tactile modalities reported above persisted even after the
variance of perceptual evidence was taken into account using
multiple regressions. This result rules out the possibility that
these correlations are explained by variance in task difficulty. This
pattern of results was not found in Experiment 2 (i.e., no corre-
lation between reaction times and confidence overlaps; all R 2 �
0.16, all p � 0.1), but replicated in Experiment 3 as further de-
tailed below.

Experiment 3
The aim of Experiment 3 was threefold. First and foremost, we
sought for the first time to document the potential common and
distinct neural mechanisms underlying unimodal and bimodal
metacognition. After the link between reaction times and meta-
cognitive efficiency uncovered in Experiment 1, we expected to
find supramodal neural markers of metacognition preceding the
first-order task, as quantified by the amplitude of ERPs and in
alpha suppression over the sensorimotor cortex before key press
(Pfurtscheller and Lopes da Silva, 1999). Second, we aimed at
replicating the behavioral results from Experiment 2, especially
the correlation between visual and audiovisual metacognitive ef-
ficiency. Third, we aimed at estimating the correlations between
confidence and reaction times overlap on a new group of partic-

ipants. Therefore, we tested participants on these two conditions
only.

Behavioral data
The staircase procedure minimized variations in first-order sen-
sitivity (t(17) � 0.3, p � 0.76, d � 0.07) such that sensitivity in the
audiovisual (mean d� � 1.15 � 0.07) and visual conditions
(mean d� � 1.17 � 0.05) were similar. Contrary to what was
found in Experiments 1 and 2, the response criterion varied
across conditions (t(17) � 4.33, p � 0.001, d � 0.63), with a
tendency to respond “congruent” more pronounced in the au-
diovisual (mean criterion � 0.27 � 0.12) versus visual condition
(mean criterion � �0.02 � 0.15). This effect was unexpected,
but did not preclude us from running subsequent analyses deal-
ing with metacognitive sensitivity. We found no effect of condi-
tion on average confidence (t(17) � 0.56, p � 0.14, d � 0.08).
Average confidence ratings correlated between the visual and au-
diovisual conditions (adjusted R 2 � 0.65, p � 0.001). No differ-
ence in metacognitive sensitivity was found between conditions
(t(17) � 0.78, p � 0.44, d � 0.09) or efficiency (t(17) � 0.78, p �
0.44, d � 0.08). Crucially, we replicated our main results from
Experiment 2 because we found a positive significant correlation
between relative metacognitive accuracy in the audiovisual and
visual conditions (adjusted R 2 � 0.47, p � 0.001) and no corre-
lation between first-order sensitivity and metacognitive effi-
ciency in either condition (both R 2 � 0.01; both p-values �0.3;
Fig. 5). Regarding the decisional locus of metacognition, Experi-
ment 3 confirmed the results of Experiment 1: reaction time and
confidence overlaps correlated more in the visual condition (ad-
justed R 2 � 0.41, p � 0.003) than in the audiovisual condition
(adjusted R 2 � �0.05, p � 0.70), suggesting that decisional pa-
rameters such as reaction times may inform metacognitive mon-
itoring, although differently between the visual and audiovisual
conditions. Altogether, these behavioral results from three exper-
iments with different subject samples confirm the existence of
shared variance in metacognitive efficiency between unimodal
and bimodal conditions and do not support major group differ-
ences between them. Further, they support the role of decisional
factors such as reaction time estimates, as predicted when con-
sidering a decisional locus for metacognition.

EEG data
Next, we explored the neural bases of visual and audiovisual
metacognition, focusing on the decisional locus of confidence by
measuring ERPs locked to the type 1 response. This response-locked
analysis took into account the differences in type 1 reaction times
between the visual and audiovisual tasks (562 ms shorter in the visual
condition on average: t(17) � 6.30, p � 0.001). Because we showed
that decisional parameters such as reaction times inform meta-
cognitive monitoring, this analysis was performed on a set of
scalp electrodes over the right sensorimotor cortex that included
the left hand representation with which participants performed
the first-order task (see Boldt and Yeung, 2015 for findings show-
ing that parietal scalp regions also correlate with confidence be-
fore response). Incorrect type 1 responses were not analyzed
because the lower bound of the confidence scale that we used
corresponded to a “pure guess” and therefore did not allow dis-
entangling detected versus undetected errors. For each trial, we
extracted the ERP amplitude time locked to the onset of correct
type 1 responses averaged within 50 ms time windows. For each
time window and each electrode, we assessed how ERP amplitude
changed as a function of confidence using linear mixed models
with condition as a fixed effect (visual vs audiovisual) and ran-
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dom intercepts for subjects (see Materials and Methods for de-
tails). This analysis allowed us to assess where and when ERP
amplitudes associated with the type 1 response were predictive of
confidence ratings given during the type-2 response. Main effects
correspond to similar modulations of ERP amplitudes by confi-
dence in the visual and audiovisual condition (i.e., supramodality
hypothesis), whereas interaction effects correspond to different
amplitude modulations in the visual versus audiovisual condi-
tions. A first main effect of confidence was found early before the
type 1 response, underlying a negative relationship between ERP
amplitude and confidence (�600 to �550 ms; p � 0.05, FDR
corrected; Fig. 6a, left, shows the grand average between the vi-
sual and audiovisual condition). A second main effect of confi-
dence peaked at �300 ms (�400 to �100 ms; p � 0.05, FDR
corrected), so trials with high confidence reached maximal
amplitude 300 ms before key press. These two effects are charac-
terized by an inversion of polarity from an early negative to a
late-positive relationship, which has been linked to selective re-
sponse activation processes (i.e., lateralized readiness potentials;
for review, see Eimer and Coles, 2003; for previous results in
metamemory, see Buján et al. (2009)). Therefore, the present data
show that sensorimotor ERP also contribute to metacognition
because they showed a relationship with confidence both in the
audiovisual and visual conditions. Confidence modulated the
amplitude and not the onset latency of the ERP, which suggests
that the timing of response selection itself does not depend on

confidence. We complemented this ROI
analysis by exploring the relation between
confidence and ERP amplitude for all re-
corded electrodes (Fig. 6a, right). This re-
vealed that the later effect 300 ms before
key press was centered on centroparietal
regions (i.e., including our ROI; p �
0.001), as well as more frontal electrodes,
potentially consistent with several fMRI
studies reporting the role of the prefrontal
cortex for metacognition (Fleming et al.,
2010; Yokoyama et al., 2010; McCurdy et
al., 2013; for review, see Grimaldi et al.,
2015). The linear mixed-model analysis
also revealed significant interactions, in-
dicating that the modulation of ERP am-
plitude as a function of confidence was
significantly stronger in the visual condi-
tion, with, again, one early (�750 to �600
ms) and one late component (�350 to
�150 ms; Fig. 6b, left). Topographical
analysis of these interactions implicated
frontal and parietooccipital electrodes.
These results at the neural level are consis-
tent with our behavioral data because we
found that reaction times have more in-
fluence on the computation of confidence
in the visual compared with the audiovi-
sual condition.

Complementary to ERP amplitude, we
also analyzed oscillatory alpha power
(i.e., premovement related desynchro-
nization) as a signature of motor prepa-
ration (Pfurtscheller and Lopes da Silva,
1999). Results of the linear mixed-model
analysis revealed a sustained main effect
of confidence starting 300 ms before key

press and continuing until 200 ms after the type 1 response (p �
0.05 FDR corrected) showing a negative relationship between
confidence and alpha power (i.e., alpha suppression; Fig. 7a, left).
Contrary to what we found in the amplitude domain, the main
effect of confidence on alpha power was found even after a first-
order response was provided. Likewise, the topographical analy-
sis revealed a different anatomical localization than the effect that
we found in the amplitude domain, with more posterior, pari-
etooccipital electrodes involved. This suggests that alpha sup-
pression before type 1 response varies as a function of confidence
nondifferentially in both the audiovisual and visual conditions.
The linear mixed-model analysis also revealed a main effect of
condition, with higher alpha power in the visual versus audiovi-
sual condition (Fig. 7b, left). This could be related to the fact that
the audiovisual task was judged more demanding by participants,
as reflected by their longer type 1 reaction times. Finally, signifi-
cant interactions between confidence and condition were found,
with topographical locations predominantly within frontal elec-
trodes. The main effects of confidence on voltage amplitude and
alpha power reveal some of the markers validating the supramo-
dality hypothesis at a decisional locus. These are likely to be part
of a bigger set of neural mechanisms operating at a decisional, but
also postdecisional, locus that was not explored here (Pleskac and
Busemeyer, 2010). The existence of significant interactions re-
veals that some domain-specific mechanisms are also at play dur-
ing metacognition, which accounts for the unexplained variance

Figure 5. Violin plots representing first-order sensitivity (a: d�), metacognitive sensitivity (b: meta-d�), and metacognitive
efficiency (c: meta-d�/d�) in the audiovisual (AV, in green) and visual conditions (V, in blue). Full dots represent individual data
points. Empty circles represent average estimates. Error bars indicate SD. The results show no difference between visual and
audiovisual metacognitive efficiency. d, Correlation between individual metacognitive efficiencies in the audiovisual and visual
conditions.
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when correlating metacognitive efficiencies across modalities at
the behavioral level.

Discussion
Is perceptual metacognition supramodal, with a common mech-
anism for distinct sensory modalities, or is it modality-specific,
with idiosyncratic mechanisms for each sensory modality? As of
today, this issue remains unsettled because the vast majority of
experiments on metacognitive perception only involved the vi-
sual modality (but see de Gardelle et al., 2016; Ais et al., 2016). In
vision, Song et al. (2011) found that approximately half of the
variance in metacognitive sensitivity during a contrast discrimi-
nation task was explained by metacognitive sensitivity in an ori-
entation discrimination task, suggesting some level of generality
within vision. Likewise, approximately one-fourth of the vari-
ance in metacognitive sensitivity during a contrast discrimi-
nation task was explained by metacognitive sensitivity during a
memory task involving words presented visually (McCurdy et al.,
2013). Here, we extend these studies by assessing the generality of
metacognition across three sensory modalities and conjunctions
of two sensory modalities. In Experiment 1, we tested partici-
pants in three different conditions that required discriminating
the side on which visual, auditory, or tactile stimuli was most
salient. We found positive correlations between metacognitive
efficiency across sensory modalities and ruled out the possibility

that these correlations stemmed from differences in first-order
performances (Maniscalco and Lau, 2012). These results extend
previous reports (Ais et al., 2016; de Gardelle et al., 2016) showing
similarities between auditory and visual metacognition to audi-
tory, tactile, and visual laterality discrimination tasks and there-
fore support the existence of a common mechanism underlying
metacognitive judgments in three distinct sensory modalities.

In Experiment 2, we further extended these results to a differ-
ent task and also generalized them to bimodal stimuli (Deroy et
al., 2016). First, using a first-order task that required congruency
rather than laterality judgments, we found again that metacogni-
tive efficiency for auditory stimuli correlated with metacognitive
efficiency for visual stimuli. Second, we designed a new condition
in which participants had to perform congruency judgments on
bimodal, audiovisual signals that required information from
both modalities to be taken into account. Three further observa-
tions from these conditions support the notion of supramodality
in perceptual metacognition. First, we observed that metacogni-
tive efficiency in the audiovisual condition was indistinguishable
from that in the unimodal auditory condition, suggesting that the
computation of joint confidence is not only possible, but can also
occur at no additional behavioral cost. These results confirm and
extend those of Experiment 1 in a different task and with different
participants and further suggest that performing confidence es-

a

b

Figure 6. Voltage amplitude time locked to correct type 1 responses as a function of confidence. a, Left, Time course of the main effect of confidence within a predefined ROI. Although raw
confidence ratings were used for the statistical analysis, they are depicted here as binned into four quartiles, from quartile 1 corresponding to trials with the 25% lowest confidence ratings (light pink)
to quartile 4 corresponding to trials with the 25% highest confidence ratings (dark red). The size of each circle along the amplitude line is proportional to the corresponding F-value from mixed model
analyses within 50 ms windows. Right, Same analysis as shown in a on the left on the whole scalp. The plot represents the time course of the summed F-value over 64 electrodes for the main effect
of confidence. The topography where a maximum F-value is reached (*) is shown next to each plot. b. Left, Time course of the interaction between confidence and condition following a linear
mixed-model analysis within the same ROI as in a. Although raw confidence ratings were used for the statistical analysis, the plot represents the difference in voltage amplitude between trials in the
fourth versus first confidence quartile. Right, Same analysis as shown in b on the left on the whole scalp, with corresponding topography. In all plots, gray bars correspond to significant main effects
(a) or interactions (b), with p � 0.05 FDR corrected. Significant effects on topographies are highlighted with black stars ( p � 0.001, uncorrected).
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timates during a bimodal task was not more difficult than doing
so during the hardest unimodal task (in this case, auditory) de-
spite its requiring the computation of confidence across two
perceptual domains. We take this as evidence in support of su-
pramodality in perceptual metacognition. Second, we found a
positive and significant correlation in metacognitive efficiency
between the auditory and audiovisual conditions and a trend
between the visual and audiovisual conditions, later replicated in
Experiment 3. As in Experiment 1, these results cannot be
explained by confounding correlations with first-order perfor-
mance. We take this as another indication that common mecha-
nisms underlie confidence computations for perceptual tasks on
unimodal and bimodal stimuli. Although the reported correla-
tions involved a rather low number of participants and were ar-
guably sensitive to outliers (McCurdy et al., 2013), we note that
they were replicated several times under different conditions and
tasks in different groups of participants, which is likely in �1% of
cases under the null hypothesis (binomial test). In addition, qual-
itatively similar correlations were obtained when metacognitive
performance was quantified by the area under the type 2 receiving
operative curve and by the slope of a logistic regression between
type 1 accuracy and confidence.

The next piece of evidence in favor of supramodal metacog-
nition goes beyond correlational evidence and provides new
insights regarding the mechanisms involved in confidence esti-

mates when the signal extends across two sensory modalities.
Using a modeling approach, we found that data in the audiovi-
sual condition could be predicted by models that computed con-
fidence with a supramodal format either based on the joint
information from a bimodal audiovisual (integrative model) rep-
resentation or on the comparison between unimodal visual and
auditory representations (comparative model). Although these
two models have distinct properties, they both involve supra-
modal confidence estimates with identical neural codes across
different sensory modalities. Therefore, although we could not
distinguish which of the two models was most representative of
behavioral data at the group level, they are both evidence in favor
of the first mechanism that we introduced, according to which
metacognition is supramodal because monitoring operates on
supramodal confidence estimates.

Finally, we assessed in Experiment 3 whether supramodal
metacognition could arise due to the second mechanism that we
introduced, according to which supramodality is driven by the
influence of nonperceptual, decisional signals during the compu-
tation of confidence estimates. For this purpose, we replicated
correlations in metacognitive efficiency between the visual and
audiovisual conditions while examining the neural mechanisms
of visual and audiovisual metacognition preceding the perceptual
judgment (i.e., at a decisional level). In a response-locked analysis
with confidence and condition as within-subject factors, we

a

b

Figure 7. Alpha power time locked to correct type 1 responses as a function of confidence. a, Left, Time course of the main effect of confidence within a predefined ROI. Although raw confidence
ratings were used for the statistical analysis, they are depicted here as binned into four quartiles, from quartile 1 corresponding to trials with the 25% lowest confidence ratings (light pink) to quartile
4 corresponding to trials with the 25% highest confidence ratings (dark red). The size of each circle along the alpha power line is proportional to the corresponding F-value from mixed-model analyses
within 50 ms windows. Right, Same analysis shown in a on the left on the whole scalp. The plot represents the time course of the summed F-value over 64 electrodes for the main effect of confidence.
The topography where a maximum F-value is reached (*) is shown next to each plot. b, Left, Time course of the interaction between confidence and condition following a linear mixed-model analysis
within the same ROI as in a. Although raw confidence ratings were used for the statistical analysis, the plot represents the difference in voltage amplitude between trials in the fourth versus first
confidence quartile. Right, Same analysis as shown in b on the left on the whole scalp, with corresponding topography. In all plots, gray bars correspond to significant main effects (a) or interactions
(b), with p � 0.05 FDR-corrected. Significant effects on topographies are highlighted with black stars ( p � 0.001, uncorrected).

Faivre et al. • Metacognition across Senses and Combination of Senses J. Neurosci., January 10, 2018 • 38(2):263–277 • 275



found that confidence preceding the type 1 response was reflected
in ERP amplitude and alpha power (main effect) within an ROI
that included the parietal and sensorimotor cortex correspond-
ing to the hand used for the type 1 task, as well as more frontal
sites. Before discussing the main effects of confidence, we note
that the analysis also revealed interactions between confidence
and condition, revealing that idiosyncratic mechanisms are also
at play during the metacognitive monitoring of visual versus au-
diovisual signals and that modulations of ERP and alpha power as
a function of confidence were overall greater in the visual versus
audiovisual condition. Regarding the main effects, we found an
inversion ERP polarity over left sensorimotor regions, suggesting
a link between confidence and selective response activation, so
that trials with high confidence in a correct response were asso-
ciated with stronger motor preparation (Eimer and Coles, 2003;
Buján et al., 2009). Regarding oscillatory power, we found rela-
tive alpha desynchronization in occipitoparietal regions, which
has been shown to reflect the level of cortical activity and is held to
correlate with processing enhancement (Pfurtscheller, 1992). At
the cognitive level, alpha suppression is thought to instantiate
attentional gating so that distracting information is suppressed
(Pfurtscheller and Lopes da Silva, 1999; Foxe and Snyder, 2011;
Klimesch, 2012). Indeed, higher alpha power has been shown in
cortical areas responsible for processing potentially distracting
information, both in the visual and audiovisual modalities (Foxe
et al., 1998). More recently, prestimulus alpha power over sen-
sorimotor areas was found to be negatively correlated with
confidence (Baumgarten et al., 2016; Samaha et al., 2016) or
attentional ratings during tactile discrimination (Whitmarsh et
al., 2017). Although these effects are usually observed before the
onset of an anticipated stimulus, we observed them before the
type 1 response, suggesting that low confidence in correct re-
sponses could be due to the effect of inattention to common
properties of first-order task execution such as motor prepara-
tion or reaction time (stimulus locked-analyses that are not re-
ported here revealed no effect of confidence before stimulus
onset). This is compatible with a recent study showing that trans-
cranial magnetic stimulation over the premotor cortex before or
after a visual first-order task disrupts subsequent confidence
judgments (Fleming et al., 2015).

The finding of lower alpha power with confidence in correct
responses is compatible with the observation that participants
with more distinct reaction times between correct and incorrect
responses had better metacognitive efficiency, as revealed by the
correlation between confidence and reaction times overlaps after
correct versus incorrect responses. Therefore, attention to motor
task execution may feed into the computation of confidence es-
timates in a way that is independent of the sensory modality
involved, thereby providing a potential decisional mechanism for
supramodal metacognition. In Experiment 1, we also found that
confidence and reaction times overlap were more correlated in
the visual condition compared with the tactile, auditory, or au-
diovisual conditions. Based on these results, we speculate that
decisional parameters are associated with processes related to
movement preparation and inform metacognitive monitoring.
Our EEG results and the correlations between reaction time and
confidence overlaps suggest that decisional parameters may have
a stronger weight in the visual than in the other modalities, which
could explain the relative superiority of visual metacognition
over other senses. We argue that this decisional mechanism in
metacognition is compatible with the supramodality hypothesis,
in addition to the supramodal computation of confidence sup-
ported by our behavioral and modeling results. Our analysis fo-

cusing on the alpha band to uncover the role of decisional cues on
confidence estimates is not exhaustive and other frequencies
might contribute to confidence estimates equally between sen-
sory domains (e.g., the theta band; Wokke et al., 2017).

Altogether, our results highlight two nonmutually exclusive
mechanisms for the finding of correlated metacognitive efficien-
cies across auditory, tactile, visual, and audiovisual domains.
First, our modeling work showed that confidence estimates dur-
ing an audiovisual congruency task have a supramodal format
after computations on the joint distribution or on the compari-
sons of the auditory and visual signals. Therefore, metacognition
may be supramodal because of supramodal formats of confi-
dence estimates. Second, our electrophysiological results revealed
that increased confidence in a visual or audiovisual task coin-
cided with the amplitude of ERP and decreased alpha power
before type 1 response, suggesting that decisional cues may be a
determinant of metacognitive monitoring. Therefore, metacog-
nition may be supramodal, not only because confidence esti-
mates are supramodal by nature, but also because they may be
informed by decisional and movement preparatory signals that
are shared across modalities.

Notes
Note Added in Proof: The author contributions were incorrectly
listed in the Early Release version published September 15, 2017.
The author contributions have now been corrected. Also note,
Complementary results, raw behavioral data, and modeling
scripts are available here: https://osf.io/x2jws. This material has
not been peer reviewed.
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